内嵌ARM核FPGA芯片EPXAl0及其在图像驱动应用

发布者:polkmm最新更新时间:2012-11-01 来源: 21ic 关键字:ARM核  FPGA芯片  EPXAl0  图像驱动 手机看文章 扫描二维码
随时随地手机看文章

随着亚微米技术的发展,FPGA芯片密度不断增加,并以强大的并行计算能力和方便灵活的动态可重构性,被广泛地应用于各个领域。但是在复杂算法的实现上,FPGA却远没有32位RISC处理器灵活方便,所以在设计具有复杂算法和控制逻辑的系统时,往往需要RISC
和FPGA结合使用。这样,电路设计的难度也就相应大大增加。随着第四代EDA开发工具的使用,特别是在IP核产业的迅猛发展下产生的SOPC技术的发展,使嵌入RISC的通用及标准的FPGA器件呼之欲出。单片集成的RISC处理器和FPGA大大减小了硬件电路的复杂性和体积,同时也降低了功耗、提高了系统可靠性。Altera公司的EPXAl0芯片就是应用SOPC技术,集高密度逻辑(FPGA)、存储器(SRAM)及嵌入式处理器(ARM)于单片可编程逻辑器件上,实现了速度与编程能力的完美结合。本文所介绍的图像驱动和处理系统正是应用了EPXAl0的这些特点,充分发挥了FPGA逻辑控制实现简单、对大量数据做简单处理速度快的优势以及ARM软件编程灵活的特点。

1 内嵌ARM核的FPGA芯片EPXA10及其主要特点

EPXAl0单片集成了ARM核、高密度的FPGA、存储器及接口和控制模块,不仅简化了ARM与FPGA之间的通讯,也使片外扩展存储器以及和外设通讯变得相对简单;同时通过在FPGA中嵌入各种IP核和用户控制逻辑可以实现各种接口和控制任务。这样的高度集成化不仅大大加快了ARM与片内各种资源的通讯速度,而且减小了硬件电路的复杂性、体积和功耗,真正实现了SOPC。

EPXAl0内部结构框图如图1所示式,主要分为嵌入处理器和FPGA两部分。

1.1嵌入式微处理器ARM922T

EPXAl0嵌入式处理器部分集成了业界领先的32位ARM处理器(ARM922T),工作频率可达200MHz;支持32位ARMv4T指令集和16位Thumb扩展指令集;具有全性能的内存管理单元以及8K的指令缓存和8K数据缓存,以支持实时操作系统(RTOS)、C语言和汇编语言。

1.2高密度的FPGA

EPXAl0片内FPGA部分具有1000000门可编程逻辑、3MB的内置RAM和512个可供用户使用的I/0管脚,可以通过嵌入各种IP核实现各种标准工业接口(如PCI、USB等)。

1.3先进的存储支持

EPXAl0嵌入式处理器部分集成了256KB单口SRAM和128KB双口SRAM;同时集成了两个先进的存储支持:(1)SDRAM控制器,用于控制单倍速/双倍速SDRAM。SDRAM的各种工作状态是依据信号线上提供的不同控制时序来确定的,实现起来非常复杂。有了SDRAM控制器的支持,只需要在Altera公司提供的EDA开发软件Quartus II中设置好SDRAM工作所需的各种参数,就可以按照直接给出指令、地址和数据的方式对SDRAM进行操作,控制器会自动将各种指令转化成SDRAM所需的工作时序,大大降低了对SDRAM的控制难度。(2)扩展总线接口(EBl),可外接4个存储设备,如闪速存储器、SRAM等,总容量高达128MB。其中EBI接口0外接闪速存储器,用于存储用户的软件、硬件设计代码。

1. 4方便的接口模块

EPXAl0嵌入式处理器部分嵌入了串口通讯模块(UART),可以不用编程直接实现ARM与超级终端之间的串行通讯,实时监视软件的运行情况。如果要实现计算机与ARM之间的数据传递存储,只需用户编写基于VC++语言的串口通讯程序,这需要用到Microsoft公司提供的MSComm串行通讯控件。

1.5灵活的启动方式

EPXAl0共有两种启动方式:(1)从ARM启动。这种启动方式需要将设计下载到片外闪速存储器中,而且设计中必须包含对ARM的应用。启动时ARM为主动,配置各种寄存器及FPGA,执行软件代码。(2)从FPGA启动。这种启动方式需要将设计下载到片外E2PROM中,而且设计中可以只包含FPGA部分的应用。启动时PP-GA为主动,ARM处于复位状态,配置完成后,如果有对ARM的应用,则ARM解除复位,执行软件代码;反之,ARM一直处于复位状态。[page]

2 EPXAl0的工作方式

EPXAl0嵌入式处理器部分提供了两条32位AMBA微控制器总线AHB1、AHB2,分别用于片内各种资源的通讯,如图1所示。基于AHB1、AHB2总线,EPXAl0的工作方式大致可分为三种:(1)ARM作为AHB1总线的主控,直接访问AHB1总线的从属资源,包括SDRAM控制器、片上SRAM、中断控制器等。(2)ARM作为AHB1总线的主控,通过AHBl-2桥访问AHB2总线上
的从属资源,包括UART、E-BI、SRAM、Stripe-To-PLD桥等,同时通过Stripe-To-PLD
桥对FPGA进行访问和控制。(3)FPGA通过AHB2的总线主控PLD-To-Stripe桥访问AHB2总线上的从属资源,包括SRAM、SDRAM控制器、UART等。

EPXAl0片内集成了软件可编程锁相环路(PLL),为微控制器总线及SDRAM控制器提供了灵活精确的时钟基准。

3 EPXAl0在图像驱动和处理方面的应用

本文所述的图像驱动和处理系统主要利用FPGA逻辑控制实现简单、对大量数据做简单处理速度快以及ARM软件编程灵活的特点,系统框图如图2所示。在芯片FPGA部分,构造了CMOS驱动模块,驱动CMOS图像传感器使之能够采集图像数据。然后图像数据经数据接收模块存入片外SDRAM中,并经串口传人PC机,要将图像数据在PC机中显示成图像,还需编写基于CDib类的图像显示程序;同时将图像数据经芯片ARM部分的图像处理算法(本系统采用Sobel算子)处理,处理后的图像数据才能经串口传给PC机进行显示。为了验证基于ARM的图像处理算法实现的正确性,还将这一算法在PC机中进行了实现,最后针对同一幅图像,将两种实现的结果进行了比较。

3.1图像的驱动

3.1.1 CMOS图像传感器的驱动

要使CMOS图像传感器成像,必须设计正确。的驱动时序,包括行同步、列同步、场同步及曝光时间设定等时序。利用FPGA逻辑编程简单的特点,用硬件描述语言Verilog HDL编程,可在FPGA中实现CMOS图像传感器的驱动时序,该驱动时序的仿真结果如图3所示。图中,ld_y为行选通信号;ld_x为列选通信号;cal为场选通信号;clk_adc为内部A/D转换器所需的时钟;addr为行列地址线;sys_reset为曝光时间设定信号;s和r为内部放大器选通信号。[page]

3.1.2图像的采集

CMOS图像传感器输出的信号为数字信号(即数字图像数据),所以图像的采集要通过FPGA中的数据接收模块将图像数据保存到片外SDRAM中。数据接收模块状态机如图4所示。标志Flag为1,开始采集数据。因为CMOS图像传感器在每个A/D转换时钟周期输出一个数据(如图3所示),接收模块也相应地设计成一个时钟接收周期接收一个数据(Burst状态),这样也就发挥了FPGA对大量数据处理速度快的优势。

3.1.3图像的显示

ARM将SDRAM中的图像数据经串口传给计算机,在计算机中用VC++语言编写串口协议和图像显示程序,将CMOS图像传感器采集到的图像显示在屏幕上,以便于监测验证。

3.2图像的处理

本系统采用的图像处理算法基于Sobel边缘检测算子。图像的边缘是由灰度不连续性所反映的,是图像的最基本信息。边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,也包括方向的确定,大多数使用基于方向导数掩模求卷积的方法。就sobel算子而言,如图5所示,采用了两个3×3卷积核形成边缘算子模板,紧邻中心像素的像素有4个,和中心像素成斜对角的像素也有4个,距离中心像素近的模板值的系数为2,成斜对角的比较远,所以其系数为1,该系数反映了这样一点:邻域对当前像素的灰度梯度的影响程度越近影响越大,越远影响越小。图像中的每个点都用这两个核做卷积,一个核对垂直边缘响应最大,而另一个核对水平边缘响应最大,两个卷积的最大值作为该点的输出位,反映了当前位置灰度梯度(图像边缘)的主要方向和大小。运算结果反映了一幅边缘幅度图像。

因为拍摄的图像为1024×1024,采用的Sobel算子为3x3模板,所以图像周边的一圈像素(第1行、第1024行、第1列、第1024列)保持原灰度值。在图像的第2行2列到1023行1023列的范围内,用图5所示的算子模板进行扫描计算,即当前像素和与当前像素相邻的8个像素,分别与模板中位置相应的9个系数相乘,累加这9个乘积结果,就得到针对某一方向的灰度梯度。比较两个方向的计算结果,取最大者作为当前位置的灰度梯度。图7为图6经过Sobel算子进行边缘提取后得到的图像。该算法在ARM中是基于C语言实现的,体现了ARM软件编程灵活的特点。

3.3试验结果

图6是成功驱动CMOS图像传感器后拍摄的景物图像,可见图像非常清晰。本文分别针对Soble算子进行了基于PC机和基于ARM的实现,图7为图6经过ARM中的Sobel算子的边缘提取结果,图8为图6经过PC机中Sobel算子的边缘提取结果,图9为图7和图8逐像素的比较结果。可见两种实现方法得到的结果完全一致,说明了基于ARM的Sobel算子的实现是正确的。

上述图像驱动和处理系统如果仅用FPGA来实现,算法部分的实现会比较复杂;如果仅用ARM来实现,驱动时序的设计也会非常困难。而采用内嵌ARM核的FPGA芯片EPXAl0,单片就实现了上述系统,大大减小了设计的难度和电路的复杂性,同时也减小了硬件电路的体积和功耗,在系统小型化方面有着独特的优势。由于EPXAl0集成了先进的ARM922T处理器器以及高密度的FPGA,所以在不增加体积和改进硬件电路的情况下,可以实现更加复杂的图像处理算法和硬件控制逻辑设计,具有很强的系统扩展潜力。这种嵌入式方案必将成为集成电路的发展趋势,将会在未来较短的时间里得到快速的发展。

关键字:ARM核  FPGA芯片  EPXAl0  图像驱动 引用地址:内嵌ARM核FPGA芯片EPXAl0及其在图像驱动应用

上一篇:Bluetooth ASIC及其嵌入式应用
下一篇:异质多处理器芯片中的数据流核心设计

推荐阅读最新更新时间:2024-03-16 13:11

最尖端的“模拟技术”推动医疗进步
  “这款A-D转换器是根据医疗仪器厂商的要求而开发的。因为对精度和耗电量的要求非常严格,所以我们采用了最尖端的技术架构。医疗领域如今已成为技术发展的领军力量。”   上面提到的A-D转换器IC是美国一家半导体企业最近投产的新产品,这款产品采用了更节能、驱动电压更低的结构。产品属于新型ΔΣ型A-D转换器,可节能30%以上。瞄准的用途是超声波诊断仪等医用图像诊断设备。目前超声波诊断仪在提高测量精度的同时,还在推进仪器的小型化,所以对A-D转换器IC提出的性能要求非常严格。这不仅促进了A-D转换器本身的发展,而且带来了文章开头提到的A-D转换器利用最尖端架构的动向。 A-D转换器的低压驱动也是一大变化趋势   其实,在医疗仪器中
[医疗电子]
基于ARM的ADμC7024在医疗电子中的应用
0 引言 随着信息技术的迅猛发展和人民生活水平的提高,极大地推动了医疗电子设备的发展,当今医疗电子设备的发展趋势是高精度、实时性、低功耗和小尺寸,作为医疗电子设备中核心地位的MCU(微处理器)也随着这一发展趋势向前不断衍变着。由早期的8位MCU发展到目前的32位RISC(精简指令集计算机)MCU。美国ADI公司根据市场的需要最新推出了一款基于ARM(高级精简指令集计算机)核的微处理器ADμC7024便是目前32位RISC MCU的杰出代表。ADμC7024卓越的处理能力、集成众多片上外围器件和芯片低功耗的特点,完全胜任目前医疗电子设备的需求及未来的发展目标。 本文以ADμC7024在医疗电子中监护产品脉搏血氧计的
[单片机]
集成式比特误码率测试仪的原理、功能及在FPGA芯片调试中的应用
随着高速数字系统的发展,高速串行数据被广泛使用,内嵌高速串行接口的FPGA也得到大量应用,相应的高速串行信号质量的测试也越来越频繁和重要。通常用示波器观察信号波形、眼图、抖动来衡量信号的质量,Xilinx提供的IBERT(Integrated Bit Error Ratio Tester)作为一种高速串行信号测试的辅助工具,使得测试更便捷,其具有不占用额外的I/O管脚和PCB空间、不破环接口信号的完整性、无干扰、使用简单和价格低廉等特点。 1 IBERT简介 IBERT是Xilinx提供用于调试FPGA芯片内高速串行接口比特误码率性能的工具,具备实时调整高速串行接口的多种参数、与系统其他模块通信及测量多通道误比特率等功能,支持
[测试测量]
集成式比特误码率测试仪的原理、功能及在<font color='red'>FPGA芯片</font>调试中的应用
基于FPGA芯片EP1c3T144和开发平台实现虚拟仪器接口设计
引 言 LabVIEW是一种基于图形程序的虚拟仪器编程语言,与传统仪器相比,虚拟仪器技术以计算机为平台,在程序界面中有用于模拟真实仪器面板的控件可供调用,可用于设置输入数值、观察输出值以及实现图表、文本等显示,因此具有友好的人机界面。LabVIEW具有强大的数据采集、分析、处理、显示和存储功能。在测试与测量、数据采集、仪器控制、数字信号分析、工厂自动化等领域获得了广泛的应用,显示出其强劲的生命力。LabVIEW平台下开发的虚拟仪器在相同硬件条件下,改变软件即可实现不同的仪器功能,真正实现了“软件即仪器”的设计理念。 实现LabVIEW对数据的采集和处理,传统的方法是采用数据采集卡,但是这些数据采集卡设备存在安装不便,价格昂贵,
[测试测量]
基于<font color='red'>FPGA芯片</font>EP1c3T144和开发平台实现虚拟仪器接口设计
Altera发布Stratix 10 SoC中的四64位ARM Cortex-A53
Altera公司宣布其采用Intel 14nm三栅极工艺制造的Stratix 10 SoC器件将具有高性能四核64位ARM Cortex™-A53处理器系统,这与该器件中的浮点数字信号处理(DSP)模块和高性能FPGA架构相得益彰。与包括OpenCL在内的Altera高级系统级设计工具相结合,这一通用异构计算平台在很多应用中都具有优异的自适应性、高性能、高功效比和设计效能,其应用包括数据中心计算加速、雷达系统和通信基础设施等。 ARM Cortex-A53处理器是SoC FPGA最先使用的64位处理器,由于该处理器的性能、功效、数据吞吐量以及很多先进的特性,因此,非常适合用于Stratix 10 SoC。Cortex-A53是功
[嵌入式]
基于FPGA芯片和频率合成器ADF4360-4的GPS信号源
频率合成器是发射系统和接收系统中的核心器件,采用相位负反馈频率控制技术,具有良好的窄带载波跟踪性能和带宽调制跟踪性能,为系统上、下变频提供本振信号,对相位噪声和杂散具有很好的抑制作用,通过锁相频率合成技术实现的频率源已经在雷达、通信、电子等领域得到了广泛应用。 本文以GPS信号源设计为参考,介绍ADI公司的频率合成器ADF4360-4在GPS信号源设计中的典型应用。   1 信号源系统组成   1.1 系统设计   根据文献了解了GPS信号的结构特点,本文设计GPS信号源的目的是模拟卫星发射的GPS信号,也就是对GPS信号进行基带调制并产生频率为1 575.42 MHz的GPS射频信号,根据文献,在系统总体设计中,
[嵌入式]
基于<font color='red'>FPGA芯片</font>和频率合成器ADF4360-4的GPS信号源
基于TLC5902的LED图像显示屏的驱动控制
摘要:TLC5902是美国Texas Instruments公司生产的专门用于图像显示的LED驱动芯片,该器件集移位寄存器、数据锁存器于一体,同时带有电流值调整恒流电路以及脉宽调制256级灰度显示恒流驱动器。文中介绍了该器件的主要功能及实际应用方法。 关键词:TLC5902 灰度级 LED 图像 1 TLC5902的主要特点 LED图像显示屏是具有灰度级显示功能的器件,其中单色图像显示屏可产生带深浅过渡的单色画面。而多色图像显示屏由于每一种基色的灰度级均可单独控制,因而可得到从白到黑的各种不同颜色的组合。这样不仅可实现深浅过渡的效果,还可形成多种丰富的色彩。相对一般的LED图文屏来说,LED图像屏显示的画面更加生动逼真,因
[应用]
基于ARM的ADμC7024在医疗电子中的应用
0 引言   随着信息技术的迅猛发展和人民生活水平的提高,极大地推动了医疗电子设备的发展,当今医疗电子设备的发展趋势是高精度、实时性、低功耗和小尺寸,作为医疗电子设备中核心地位的MCU(微处理器)也随着这一发展趋势向前不断衍变着。由早期的8位MCU发展到目前的32位RISC(精简指令集计算机)MCU。美国ADI公司根据市场的需要最新推出了一款基于ARM(高级精简指令集计算机)核的微处理器ADμC7024便是目前32位RISC MCU的杰出代表。ADμC7024卓越的处理能力、集成众多片上外围器件和芯片低功耗的特点,完全胜任目前医疗电子设备的需求及未来的发展目标。   本文以ADμC7024在医疗电子中监护产品脉搏血氧计的应用为
[医疗电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved