基于MCU+DSP的运动控制硬件平台设计

发布者:学思者最新更新时间:2012-11-13 来源: 21ic 关键字:S3C2410A  运动控制  伺服电机 手机看文章 扫描二维码
随时随地手机看文章
  引言

  开放式控制器体系结构源于“开放式”的PC(个人计算机) 技术, 目前的开放式运动控制器多为PC+运动控制卡结构, 随着MCU(微控制器) 和DSP(数字信号处理器)性能的增强, MUC和DSP取代PC的趋势日趋明显, 而这种嵌入式的紧凑结构较PC有更广泛的环境适应性。MCU、DSP和PC差异较大, PC环境中的运动控制技术不可能直接向MCU和DSP系统中转移, 基于MCU和DSP硬件平台的运动控制技术的研究十分必要。

  设计目标与需求分析

  运动控制系统发展方向

  在开放式控制器技术的推动下, 运动控制系统由传统的封闭式结构朝着开放、可重构、网络化方向发展。按照《开放式数控系统第1 部分: 总则》(GB/T18759.1- 2002) 的定义, 开放式数控系统有三个层次的开放, 第一层, 系统功能可配置, 人机界面、伺服驱动单元的运动控制接口、逻辑控制单元接口均开放; 第二层, 系统软件体系结构、拓扑结构和应用软件接口开放, 第三方的应用软件能在系统中安装运行并实现互操作性, 且第三方的软件模块可以在拓扑结构不变的情况下对本系统软件模块置换和扩展; 第三层

, 系统实现可重构。国标GB/T 18759.1- 2002 尚未公布可重构的详细内容。运动控制系统是数控系统的一个核心组件, 其技术发展方向和开放式数控系统类似。现代运动控制器联通信息网、逻辑控制网和伺服控制网(接口) 三种网络。

  在MCU 和DSP 环境中运动控制技术的研究课题

  和PC相比, MCU和DSP采用了哈佛结构, 流水线技术, 超长指令字, 加乘器等提高CPU速度, 并在片上扩展了控制用前向和后向通道外设及通信接口, 在这种环境下, 实现开放、可重构和网络化运动控制功能, 下列研究是必要的:

  ①体系结构的研究, 以多CPU方式实现复杂的运动控制;

  ②嵌入式系统中实时操作系统的研究, 解决MCU和DSP控制器系统软件问题;

  ③MCU和DSP环境中运动控制算法的研究, 解决少资源情况下, 复杂控制算法的实现问题;

  ④软件模块管理与剪裁技术的研究, 解决通用技术方案的应用针对性问题;

  ⑤网络通信技术的研究:解决伺服通信网、逻辑控制网和信息网通信问题。

  硬件系统设计目标与结构要求

  基于MCU和DSP的运动控制技术研究硬件平台的设计目标是为上述研究课题提供硬件系统环境, 以MCU或DSP为核心的商品化运动控制器并不少见,但它们只对用户提供运动控制函数库的接口, 并不是完全意义上的开放, 必须开发运动控制器的硬件研究平台, 并满足下列要求:

  ①类型与结构化模式要求:CPU选型应是主流的MCU和DSP芯片,结构体系采用单CPU,双CPU流水线模式和层次化结构, CPU可以独立工作, 可以组成流水线模式工作。也可以采用两层结构,上下层分别处理不同实时要求的任务。

  ②开放性要求:各CPU单元配置计算机通信接口, 如RS232、PCI、CAN、USB 等, 可以方便地实现硬件互联。

  ③网络化要求:配有伺服单元接口、现场总线接口和以太网接口。

  系统设计

  运动控制系统硬件结构

  运动控制系统硬件基本结构如图1 所示:

运动控制系统硬件基本结构

  控制器联通人机界面和三种网络。控制器与人机界面的联接多采用开放的工业现场总线ModBus 等;控制器通过以太网接口与Internet/Intranet联接, 实现与管理信息系统的交互;控制器多通过现场总线如CAN、ModBus和RS485等与网络化的PLC工作站通信, 处理控制对象的大量I/O;控制器和高速伺服网络联接, 传送伺服放大器的控制信号, 但该方案技术难度高, 只有少数企业采用专用的高速伺服通信网络实现了伺服电机的组网, 多数方案还是采用的规范化的电机接口, 一个伺服电机的接口如下:

  ①2路脉冲波形输出, 其间相位差900, 或者其中一路可以作为方向信号( 高或低) ;

  ②1路AD输出, 一般为±10V,位数为12位或16位;

  ③2路增量编码器脉冲输入, 一路来自伺服电机,另一路来自执行机构终端;

  ④3路数字信号输出, 包括伺服使能、正转限制、反转限制;

  ⑤4路数字信号输入, 包括伺服准备好、左极限、右极限和零位信号;

  上述接口电路也可以联接步进电机。运动控制器的内部层次结构如图2 所示:

运动控制器的内部层次结构

  上层控制器处理复杂控制算法及弱实时任务, 下层控制器处理插补与伺服控制等强实时任务。两个DSP构成双DSP流水线模块, 并行处理复杂实时控制任务。[page]

运动控制系统研究硬件平台设计

  主芯片选型

  MCU与DSP芯片选型的原则是适用与广泛性原则, 选用的芯片适用于开放式控制器设计并有广泛的硬件与软件资源。三星公司S3C2410A芯片采用ARM920T内核, 主频高达266MHz, 支持WinCE与Linux及μC/OS- II实时操作系统, 可扩展的地址空间1G, 并配有中断、AD、UART、GPIO、触摸屏和TFT接口等片上外设; 德洲仪器公司的TMS320F2812DSP 芯片的主频150MHz, 支持DSP/BIOS和μC/OS- II 实时操作系统, 可扩展的地址空间为1M, 并配有中断、AD、串行接口、事件管理器等片上外设。这两种CPU中,S3C2410A主要用于控制系统管理、监控和复杂控制算法的实现, DSP主要用于伺服电机接口和反馈、滤波等强实时控制算法的实现。

  硬件系统配置

  整个研究平台硬件配置了三块主机板和一个背板, 其结构如图3 所示:

硬件系统配置结构

  三块主机板可以单独使用, 也可以组合使用, 它提供了MCU和DSP及双DSP的硬件平台S3C2410A。主机板的USB是Host, 另两块板的USB是Device配置, 另外, S3C2410A主机板和F2812主机板还通过背板有串口通信、GPIO及中断沟通, 可以组合成一个以S3C2410A主机板为

上位机, F2812 - 1和F2812- 2主机板为下位机的双层结构, S3C2410A主机板处理弱实时任务, DSP处理强实时任务;

  弱实时任务包括系统监控、模糊与神经网络等复杂控制算法, 强实时任务包括插补计算、数字滤波和PID控制等算法。由此来验证MCU和DSP环境中的算法可行性。

  CPU 扩展与外设配置

  针对本系统设计要求, S3C2410A主机板原理框图如图4所示。选用两片HY58V561620CT- H, 构成16M×32位RAM空间; 选用两片E28F128J3A150, 构成16M×32 位Flash空间; CPLD选用XC9536, 用于GPIO地址译码和QEP接口的实现, 选用DAC8534A串行16位DAC扩展数模转换接口, 采用CS8900A 以太网芯片扩展网络接口。

S3C2410A主机板原理框图

  F2812-1主机板原理框图如图5所示, 选用IS61V5126, 扩展256KROM空间, 选用AM29LV800BT扩展512KFlash, 选用XC95144XL进行GPIO地址译码, 选用AN2131Q作USB Device的扩展, 在McBSP串口上扩展16位DAC8534A用于伺服的速度与力矩控制。特别的, F2812提供了完善的伺服电机接口, 它有两个事件管理器, 每个事件管理器包括两个通用计数器, 三个比较/PWM单元, 三个捕捉单元, QEP通道。PWM和通用计数器配合可用作伺服控制器的位置控制模式输入, QEP通道可用作伺服电机的位置编码器脉冲输入, 执行器终端的编码器信号通过CPLD扩展QEP输入。

  F2812-2主机板原理框图如图6所示, 为了验证多电机的并行控制算法, 在F2812-1主机板的基础上, 用双口RAMIDT70V25将两个CPU联接起来, 形成了一个对称结构。按目前板上的电机接口配置, 每块板可接两路全闭环伺服电机, F2812-2主机板可接四路全闭环的伺服电机。

主机板原理框图

  结论

  选用S3C2410A和F2812作运动控制系统的嵌入硬件研究平台, 组成一个多CPU的双层控制器结构,既可以单独进行单MCU和DSP环境中的运动控制算法研究, 又可以进行多CPU平行模式的复杂运动控制系统研究。系统简练、可靠, 符合运动控制器的开放式、可重构和网络化的发展方向。

  本文作者创新点:针对嵌入式运动控制器发展趋势,设计实现了一个开放式、可重构、多CPU的运动控制器硬件平台, 该平台可用于复杂运动控制系统的研究。

关键字:S3C2410A  运动控制  伺服电机 引用地址:基于MCU+DSP的运动控制硬件平台设计

上一篇:基于PXA255设计的图像采集传输系统
下一篇:一种基于ARM内核SoC的FPGA 验证环境设计方法

推荐阅读最新更新时间:2024-03-16 13:13

基于Delphi的直流伺服电机自动测试系统的设计
  本自动测试系统要求完成几种不同类型的直流伺服电机的测试。这些电机具有一个共同的特点:转速高、工作电流低,其中直流伺服电机J40SY272A的性能参数见表1。经过方案调研和审核,选取Magtrol的测功机HD510、HD710、测功机控制器DSP6001、三相电力分析仪6530,2台安捷伦HP6673A大功率直流电源组建系统。   系统的机械部分是测试设备同被测电机连接的装置,如联轴器及法兰盘支架。由于不同种类的电机其固定方式、电机尺寸、扭力及转速差别较大,所以法兰盘支架是针对每一特定型号的电机专门设计的,为更好的平衡和补偿附加扭力,采用英国HUCO公司生产的多连杆柔性联轴器,同时设计了保护电路以保证测试系统的功能及安全性。  
[嵌入式]
基于模糊PID的全方位移动机器人运动控制
    移动机器人是一个集环境感知、动态决策、行为控制与执行等多种功能于一体的综合系统,其运动控制是移动机器人领域的一个重要研究方向,也是移动机器人轨迹控制、定位和导航的基础。传统的运动控制常采用PID控制算法,其特点是算法简单、鲁棒性强、可靠性高,但需要精确的数学模型才对线性系统具有较好的控制效果,对非线性系统的控制效果并不理想。模糊控制不要求控制对象的精确数学模型,因而灵活、适应性强。可是,任何一种纯模糊控制器本质上是一种非线性PD控制,不具备积分作用,所以很难在模糊控制系统中消除稳态误差。针对这个问题,结合运动控制系统的实际运行条件,设计采用模糊PID控制方法来实现快速移动机器人车轮转速大范围误差调节,将模糊控制和PID控制结
[嵌入式]
一文全面介绍伺服电机的选型设计
伺服电机选型设计概述 伺服驱动和电机与工业机器的性能相匹配:惯量、容量与速度。 惯量:一般机构JL ≤JM,当JL≥3JM时,可控性会降低。不同机构对惯性匹配要求不同。 容量——根据电机负载确定,要求电机的额定转矩与被驱动的机械系统负载相匹配,通常TM x 0.8 TL ,步科电机可以做到3倍过载,可以不用预留容量。 速度:减速器。低转速高扭矩运行时 伺服电机选择考虑因素:机械负载、动作模式、负载速度、定位精度、使用环境。 一文全面介绍伺服电机的选型设计 注:以练习三为例,选型设计步骤如下: 根据圆柱体惯量的计算公式 JL=0.5M R2 =0.5x10x0.12=0
[嵌入式]
一文全面介绍<font color='red'>伺服电机</font>的选型设计
步进电机和伺服电机的差别在哪里
伺服电机到底比步进电机贵在哪里?机电设备中有的地方用的伺服电机。有的地方用的是步进电机,价格是相差很远的。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移
[嵌入式]
乐创运动控制应用领域全面开花
创e时代讯(刘芬) 运动控制 就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。在第12届高交会电子展上, 乐创 自动化技术有限公司董事长赵钧先生向记者展示了 乐创 在 运动控制 应用上的最新技术成果。   赵钧带着记者参观了 乐创 的展台,据他介绍,此次是 乐创 第一次参展高交会,相信能够提升公司形象,加强行业交流,开拓研发人员视野,更加贴切的了解行业的变化和发展。这次展出的产品以 运动控制 器居多,驱动器、通用控制器已经专用的控制系统也有展出,这些产品目前在某些行业已经占有主导地位,例如激光加工、点胶 机器人等,都是 乐创 的支柱性产品。赵均对创e时代记者介绍了 乐创 的发展历程
[工业控制]
机器人大战在即,专利布局得早早滴
有机构预测,2015年中国的消费量将超过8万台,而到2025年,这一数字将达到25万台以上,远远超过目前全球市场总量。未来30年中国都将是全球机器人最大市场。     机器人的十八般武艺,正深度刷新工业生产格局。     根据国际机器人联合会IFR数据,2005至2015年,全球工业机器人的年均销售增长率为9%,其间中国工业机器人年均销售增长率达到25%。有机构预测,2015年中国的消费量将超过8万台,而到2025年,这一数字将达到25万台以上,远远超过目前全球市场总量。未来30年中国都将是全球机器人最大市场。     尽管需求越来越大,但反观国内机器人产业,竞争能力却远远落后于日本、美国、德国等发达国家。他们在
[嵌入式]
工业机器人的“心脏” 伺服电机未来出路在哪里?
自德国提出工业4.0之后,中国也提出了“中国制造2025”规划,随着中国自动化步伐的加快,未来中国将成为超级机器人大国,工业机器人需求量大大增长。然而在工业机器人高增长刺激下,其控制系统和自动化主要产品伺服电机发展之路必将发生改变,伺服电机作为工业机器人的动力系统以及机器人运动的“心脏”,未来出路在哪里?下面就随工业控制小编一起来了解一下相关内容吧。 工业机器人的“心脏” 伺服电机未来出路在哪里? 《2015-2019年全球工业机器人伺服电机行业报告》显示,2013年开始,中国成为世界最大的工业机器人市场,2014年销量飙升到全球伺服电机销量的55%。预计到2019年,中国市场对伺服电机的需求将达到182000台。 工业机器
[工业控制]
运动控制系统是什么?什么是运动控制系统?
运动控制系统 其实运动控制系统是一个比较大的系统,就像前面的通信系统一样,通常会由众多的组成部分构成。运动控制系统会综合信号分析与处理、自动控制、通信等的内容。 运动的要素 抽象来讲,运动的要素可概况为以下几点:对象、参考系、状态描述、状态改变、动力。因此,物体的运动,简单来讲就是对象物体在力的作用下,在特定的参考系下的状态发生了改变。 在运动系统的设计阶段,首先需要的就是对这里提到的这些运动要素以及相互间的联系进行明确,即“建模”的过程。“建模”是运动控制的基础。 对象 对象就是我们进行运动控制的实体。对于运动控制而言,对象通常是明确的。 不同的对象会表现出不同的特性,因此在受到力后会表现处不同的响应,会出现不同的运动情况。
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved