TEA1520系列单片开关电源的应用电路及设计要点介绍

发布者:shtlsw最新更新时间:2012-11-23 来源: 21IC 关键字:TEA1520系列  开关电源  退磁 手机看文章 扫描二维码
随时随地手机看文章

1  简易型开关电源

    由TEA1520系列构成的简易型开关电源电路如图1所示。

图1由TEA1520系列构成简易型开关电源的电路

    为防止刚上电时输入滤波电容的充电电流过大,在交流电源输入端串联了一只负温度系数的热敏电阻R1(NTC)。BR为整流桥。由C1、L和C2构成π型滤波器。交流电源电压u经过整流滤波后获得直流高压UI,给高频变压器一次侧供电。由VDZ和VD1构成的钳位保护电路,可将漏感产生的尖峰电压衰减到安全范围内,避免损坏芯片。二次绕组电压通过VD3、C5整流滤波后,获得输出电压UO。反馈绕组电压UF分成两路:第一路经过VD2、R2、C3整流滤波后,给TEA1520提供电源电压UCC,再经过R3、R4分压后得到反馈电压UREG,加至TEA1520的脚4;另一路则通过退磁电阻RAUX接脚5。R5和C4分别为振荡电阻、振荡电容。RI是过流检测电阻,利用过流保护电路可限制漏极电流不超过极限值。C6为安全电容。

2  精密开关电源

    由TEA1522T构成的3W精密开关电源电路如图2所示。当配80~276V交流电源时,最大输出功率可达7W。与图1所示电路相比主要有以下区别:

图2  由TEA1522T构成的3W精密开关电源电路

    1)电路中增加了由可调式并联稳压器(TL431)和光耦合器(SFH6106-2)组成的光耦反馈式电路;

    2)输出级采用两级滤波器,第一级滤波器由C3构成,第二级滤波器由L2、C4构成,亦称后置滤波器,可进一步滤除纹波电压;

    3)在UCC-REG端之间并联一只反向击穿电压为22V的1N6008B型稳压管,一旦UCC>22V,可起到钳位保护作用。

    一次侧的钳位保护电路由VDZ1和VD1所组成。其中,VDZ1为BZD27-C160型瞬态电压抑制器,可直接用P6KE160或者P6KE200来代替。阻塞二极管VD1实选BYD37J型600V/1.5A快恢复二极管,亦可选UF4005型600V/1A的超快恢复二极管,VD3采用STPS340U型400V/3A的肖特基二极管。SFH6106-2型光耦合器亦可用PC817A来代替。高频变压器采用EE13型磁芯,一次绕组匝数NP=134匝,其电感量LP=1.8mH。二次绕组匝数NS=8匝,反馈绕组匝数NF=22匝。

    该电源具有良好的稳压性能。举例说明,当UO降低时,经过R5、R6分压后得到取样电压,与TL431内部的2.50V基准电压进行比较之后,使K点电位升高,LED的工作电流减小,再通过光耦合器使UREG升高,令TEA1522T的输出占空比增大,迫使UO升高,恢复到稳定值,从而达到了稳压的目的。RI为过流检测电阻,RAUX为退磁电阻。R7和R8是LED的限流电阻。R7还与C8构成滤波器,可滤除高频干扰。C7可适当降低误差放大器在高频端的增益,防止出现自激振荡。R9和C10用以改善误差放大器的瞬态响应。C11为安全电容,能够滤除由一次、二次绕组间分布电容产生的噪声电压。

    当u=75~275V时,实测空载时的待机功耗(PD)与电源电压(u)的关系曲线如图3所示。由图3可见,PD最大不超过63mW,远低于100mW,这是TEA1520系列产品的一大特点。开关电源输出功率(PO)与开关频率(f)的关系曲线如图4所示,不难看出,在小功率输出时,开关频率随着输出功率的减小而迅速降低,这是此系列产品的另一显著特点。

图3  待机功耗与电源电压的关系曲线 [page]

图4  输出功率与开关频率的关系曲线

3  设计要点

    下面介绍TEA1520系列单片开关电源的设计要点。需要指出,设计TEA1520系列时所用的公式与TOPSwitch-Ⅱ系列有所不同,原因之一是这两种芯片的特性存在差异,原因之二是在设计方法上二者有一定区别。下面以3W精密开关电源为例,介绍TEA1520系列的设计要点。

3.1  开关频率

    通过选择振荡电阻与振荡电容值,即可设定开关频率,允许范围是20kHz~200kHz。取R2=7.5kΩ、C5=330pF时,开关频率f≈115kHz,可近似视为100kHz。振荡电容容量的允许范围是220~1000pF,不得小于220pF,否则电路可能不起振。如取C5=100pF时,欲设计f=200kHz,开关电源就无法正常工作。

3.2  高频变压器的设计

    1)一次绕组的电感量LP

    计算LP的公式为

        LP=   (1)

式中:IP为一次绕组的峰值电流。

    2)磁芯的选择

    所选用的磁芯应能满足存储最大能量并留有一定气隙宽度的要求。但二者之间也存在着矛盾,尽管增大气隙宽度可以存储更多的能量,但泄漏电感也会随之增大,因此应做综合考虑。高频变压器所存储的最大能量(EM)由下式确定:

      EM=10-6IP2LP      (2)

式中:IP、LP的单位分别取mA、mH,EM的单位是mJ。

    计算每边留出气隙宽度的公式为

       δ=      (3)

式中:δ为磁芯每边留出的气隙宽度(单位是mm),一般取0.1~0.3mm;

      SJ为磁芯有效截面积(单位是mm2);

       BM为最大磁通密度(单位是mT),一般可取275mT,这样在工作时不会进入磁饱和状态。

有关高频变压器磁芯的选择,可参阅表1。磁芯型号中的三组数字,分别表示磁芯的长度、宽度和厚度(单位是mm)。所选择的磁芯应符合下述条件

      EM(δ1)≤EM≤EM(δ2)      (4)

表1 磁芯的选择

所存储的最大容量EM/mJ 磁芯的型号 有效截面积SJ/mm2
δ1=0.1mm δ2=0.3mm
0.10 0.23 E13/7/4 12.40
0.13 0.33 E16/12/5 19.40
0.14 0.34 E16/8/5 20.10
0.15 0.35 E13/6/6 20.20
0.20 0.45 E19/8/5 22.60
0.21 0.50 E20/10/5 31.20
0.27 0.62 E20/10/6 32.00
0.33 0.78 E25/9/6 38.40
0.38 0.88 E19/8/9 41.30
0.45 1.00 E25/13/7 52.00
0.64 1.40 E30/15/7 60.00
0.74 1.80 E31/13/9 83.20
0.74 1.80 E32/16/9 83.00
0.74 1.80 E34/14/9 80.70
    举例说明,现采用E13/7/4型磁芯,查表1可知SJ=12.40mm2。已知LP=1.8mH,BM=275mT,令IP=330mA,分别代入式(2)和式(3),计算出

      EM=10-6IP2LP=10-6×3302×1.8=0.19mJ  [page]

    δ===0.11mm

查表1可知,EM(δ1)=0.10mJ,EM(δ2)=0.23mJ,而算出的EM=0.19mJ,恰好在0.10~0.23mJ之间,满足式(4)的规定条件,由此证明所选磁芯是合适的。为便于加工,实际气隙宽度可取整数值0.1mm。

    3)一次绕组匝数NP计算公式为

        NP=     (5)

根据计算结果找出一个最接近于NP值的整数值,作为一次绕组的实际匝数。将δ=0.1mm,BM=275mT,IP=330mA,代入式(5)中,得到NP=133.2匝≈134匝。

    4)二次绕组匝数NS

    按下式计算NS并取整数值

        NS=·NP     (6)

式中,UF3为输出整流管的正向压降。实取UO=5V,UF3=0.4V(采用肖特基二极管),n=17,NP=134匝,代入式(6)中求出NS=8.5匝,取整数值8匝。

    5)反馈绕组匝数NF

    当电源电压UCC确定后,可按下式计算NF值

         NF=·NS   (7)

将UCC=15V,UO=5V,UF2=0.7V代入式(7)中求得,NF=22.04匝,取整数值22匝。

3.3  计算过流检测电阻RI

    过流检测电阻用来限定IP值,亦即MOSFET的最大漏极电流ID(max)。RI上最大压降的典型值为URI=0.5V。RI的阻值可用下式求出

       RI≤=       (8)

    当IP=330mA时,由式(8)计算出RI=1.5Ω。其最大功耗P=IPURI=0.165W,实选0.5W的电阻。

3.4  计算退磁电阻RAUX

    计算退磁电阻的公式为

      RAUX=0.7nUO     (9)

式(9)中电阻的单位是kΩ。取UO=5V,n=NP/NS=134/8=16.75≈17,将nUO=85V代入式(9)中不难算出,RAUX=60kΩ。图2中实取75kΩ。

3.5  确定电源电压UCC

    TEA1520系列的电源电压典型值约为13V,实际可取20V以下。计算公式为

       UCC=·(UO+UF2)-UF2    (10)

式中的UF2代表反馈电路中整流管VD2的正向压降。将NF=22匝,NS=8匝,UO=5V,UF2=0.7V一并代入式(10)中,得到UCC=15V。

关键字:TEA1520系列  开关电源  退磁 引用地址:TEA1520系列单片开关电源的应用电路及设计要点介绍

上一篇:基于SG1525的PFM-PWM控制谐振DC/DC变换器
下一篇:nanoWatt XLP技术在单片机上的引用

推荐阅读最新更新时间:2024-03-16 13:13

基于单片机的电流比任意可调并联电源设计与实现
    为了满足大负载功率的要求,电源系统往往需要用若干台开关电源并联 供电。而且在实际应用中,常常存在两个并联电源功率不同、不能平均分摊电流的情况,这就要求功率高的电源模块分担更大的电流的情况。因此有必要采取一种有效的分流控制方案,以保证整个电源系统的输出电流按各个单元模块的输出能力分担,这样既能充分发挥单元电源模块的输出能力,又能保证每个单元电源的工作可靠性 。基于灵活性需求,将单片机运用于开关电源并联分流控制就显得十分必要。本文在并联电源系统主从设置法均流技术 的基础上,设计了一种基于单片机的半智能型并联电源系统,其中的单片机模块可以实时监控各模块的分流情况,并通过人机对话端口实现对并联电源系统分流比的任意可调,极大地拓宽了
[电源管理]
基于单片机的电流比任意可调并联电源设计与实现
解密LED照明非隔离BUCK开关电源
在LED照明应用中,由于非隔离BUCK开关电源的效率较高,所以有较多客户青睐,占了一部分的市场份额。以SN3 910为代表,市场上有一系列类是功能的IC,如BP2808,SMD802,AM850,SN3910....等。就价位来说,国内有些厂家的IC已经降到两块多人民币。所以对于低成本的应用,还是比较合理的选择。接下来以SN3910为例来说明此类IC的应用线路及思路。 图1   降压 LED电路图(BUCK ) 来自   工作原理: 1 、当 Q1 导通时,输 入 电流 Iin 通过负载 LED 、电感 L1 、 Q1 到输入电源负极。 LED 等发光的同时 L1 电感中的电流慢慢上升,达
[电源管理]
解密LED照明非隔离BUCK<font color='red'>开关电源</font>
开关电源噪音产生的原因_如何改善反激式开关电源噪音
音频噪声一般指开关电源自身在工作的过程中产生的,能被人耳听到频率为20-20kHz的音频信号,尤其是对2-40kHz的时候最为敏感,如下等响曲线图1。电子和磁性元件的振荡频率在人耳听觉范围内时,会产生能听见的信号。这种现象在电力变换研究初期已为人知。以50和60Hz工频工作的变压器常常产生讨厌的交流噪声。如果负载以音频元件调制,以恒定超声频率工作的开关功率转换器也会产生音频噪声。本文首先介绍了开关电源噪音产生的原因,其次阐述了如何改善反激式开关电源噪音的解决办法,具体的跟随小编一起来了解一下。    开关电源噪音产生的原因    1、电源模块噪声的产生    反激式开关电源拓扑结构,如图所示。由场效应管Q1导通,输入电流流过
[电源管理]
TOPSwitch-FX系列单片机开关电源的应用
一、能进行外部限流的12V、30W开关电源 由TOP234Y构成12V、30W高效开关电源的电路如图1所示。其交流输入电压范围是AC85~265V,满载时电源效率可达80%。交流电压u依次经过电磁干扰(EMI)滤波器(C10,L1)、输入整流滤波器(BR,C1)获得直流高压UI。UI经过R1和R2分压后接M端,能使极限电流随UI升高而降低。R1可提供电压前馈信号,当UI偏高时能自动降低最大占空比,以减小输出纹波。R2为电流极限设定电阻,所设定的Ilimit≈0.7Ilimit=0.7×1.5A=1.05A,略高于低压输入时的峰值电流Ip值。这里将系数取0.7是考虑到TOP234Y在宽范围输入时,最大连续输出功率Pom=45W,
[单片机]
TOPSwitch-FX<font color='red'>系列</font>单片机<font color='red'>开关电源</font>的应用
用于输入交流400Hz场合的机载高频开关电源解决方案
  机载高频开关电源产品专门用于输入交流400Hz的场合,这项产品主要应用于军用雷达、航空航天、舰船、机车以及导弹发射等。研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。   机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选试验,因此设计机载电源的可靠性给我们提出了更高的要求。   机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V直流电源。两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔
[电源管理]
RCC式开关电源及应用技术方案
线性稳压电源因具有电路简单和成本低廉的优点,一直在低功率应用中倍受欢迎。这个线性稳压电源只需少量元件,且与开关电源SMPS(Switch Mode POWER Supply)相比,更易于设计和制造。然而,由于以下两个原因,近年来线性电源开始逐渐被替代:其一,许多线性电源都是作为PDA、无绳电话和手机等产品的外部电源(EPS)绑定销售。如今EPS必须遵循严格的新节能标准,而此类标准几乎将线性电源排除在外,因为线性电源通常无法达到工作效率和空载功耗方面的标准;其二,大多数先进的低功率SMPS在成本和简单性方面与线性电源相当。这里将探讨低功率SMPS在初步应用阶段的不足之处,并讨论一种可行的方法,以帮助设计工程师设计出在成本效益方面符合
[电源管理]
RCC式<font color='red'>开关电源</font>及应用技术方案
多用途延迟开关电源插座
  家用电器、照明灯等电源的开或关,常常需要在不同的时间延迟后进行,本电源插座即可满足这种不同的需要。 ?  工作原理:电路如图所示,它由降压、整流、滤波及延时控制电路等部分组成。 ?  按下AN,12V工作电压加至延迟器上,这时NE555的②脚和⑥ 脚为高电平,则NE555的③ 脚输出为低电平,因此继电器K得电工作,触点K1-1向上吸合,这时“延关”插座得电,而“延开”插座无电。 ?  这时电源通过电容器C3 、电位器RP、电阻器R3至“地”,对C3进行充电,随着C3上的电压升高,NE555的②、⑥脚的电压越来越往下降,当此电压下降至2/3Vcc 时,NE555的③脚输出由低电平跳变为高电平,这时继电器将失电而不工作,
[电源管理]
FA5310开关电源控制IC及其应用
1引言 许多电子系统都需要开关电源。开关电源的电路多种多样,其中已有许多采用控制芯片。控制芯片只要再外接一些器件即可组成开关电源,从而大大简化了电路设计。 FA5310是日本富士电机公司的产品,它具有多种保护功能,外接电路简单,有很大的实用价值。FA5310具有以下特点: 可直接驱动功率MOSFET(I0=±1.5A);宽工作频率范围(5~600kHz);具有逐个脉冲过流限制功能;有过载切断功能(可选用锁定或无保护模式);可用外部信号控制输出ON/OFF;有过压切断功能(锁定模式中)和欠压误动作保护功能(16V时导通,8.7V时关断);等待电流低(90μA);占空比为Dmax=46%,可用于正激和反激电路。 图1为FA5310的
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved