基于RF2.4 GHz的超低功耗无线数传系统设计

发布者:游走人间最新更新时间:2013-05-20 来源: dzsc关键字:2.4GHz  无线数传系统  MSP430F247 手机看文章 扫描二维码
随时随地手机看文章
  引言

  目前,无线通信技术已经成为一大热点,而系统设计的微型化、低功耗成为发展的必然趋势。在保证系统工作可靠性的前提下,如何实现系统低功耗是无线数据传输系统亟待解决的一个主要问题。本文利用MSP430超低功耗单片机和2.4 GHz ISM频段的射频芯片EMl98810设计了一种低功耗的无线数据传输系统。该系统使用干电池供电,可广泛应用于电池供电的自动化数据采集系统、无线遥控、无线鼠标、无线键盘、无线电子标签、遥控玩具,以及水、气、热、电等居民计量表具无线远传自动抄表。

  1 系统概述

  目前在2.4 GHz频段的集成射频芯片有多种,性能各有差异,表1列出了几种常用芯片的性能特点。


  本系统采用MSP430F247单片机和EMC公司的EMl98810芯片进行设计。MSP430系列单片机是一个16位精简指令集(RISC)微处理器。它具有丰富的寻址方式(7种源操作数寻址,4种目的操作数寻址),简洁的27条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;具有高效的查表处理指令;有较高的处理速度,在8 MHz晶振驱动下指令周期为125 ns;中断源较多,并且可以任意嵌套;当系统处于省电的备用状态时,用中断请求唤醒只用6μs。MSP430系列单片机的电源电压采用1.8~3.6 V,其在1 MHz的时钟条件下运行时,芯片的电流为200~400μA左右,时钟关断模式最低只有O.1 μA。

  EMl98810芯片内建2.4 GHz GFSK射频收发器,带有8位数据帧无线收发功能,前导区可以设置为1~8字节,支持1~4个字地址(最多可达64位),最大数据传输速率为1 Mbps,允许长数据包传送;频率范围为2 400~2 482 MHz(81信道),传输距离100 m(PCB天线),RF输出功率2 dBm,接收灵敏度在-85 dBm以上,采用SPI数字编程接口,接口电压为2.5~3.7 V。该芯片发射功率可数字编程调节,通过寄存器的设置很容易实现低功耗模式;内建多种纠检错功能,采用各种有效载荷数据格式来消除直流漂移量;支持FEC的1/3、2/3纠检错功能和CRC16检错功能。内部具有FIFO和DIRECT两种工作模式:FIFO模式简单易用,对MCU要求不高,发射和接收各有64字节的缓冲区,一次发送、接收可以最多处理64字节数据;DIRECT模式对MCU要求较高,需要MCU处理各种纠检错功能。

  2 系统设计

  2.1 系统硬件设计

  图1是MSP430F247单片机和EMl98810的连接示意图,通过SPI总线与RF芯片相连。实际电路连接如图2所示。




  2.2 系统软件设计

  数据包格式如下:



  其中,前导区可配置为1~8字节,同步字可配置为16、32、48或64位;前导尾区可配置为4、6、8……18位;数据区可为NRZ码、Manch-ester码、8/10位码、带FEC的数据4种格式。

  系统上电后,先使EMl98810的RESET_n引脚为低电平,以保证芯片有效复位;再使此引脚为高电平,BRCLK脚会产生12 MHz的时钟;然后进行相关寄存器初始化。初始化程序流程如图3所示。

[page]


  其中,Reg48为数据帧格式配置寄存器,需要设置前导区的长度(默认为3字节),同步字长度默认为64位,前导尾默认长度为4位,数据默认为NRZ格式。该寄存器的第2位为1则配置为睡眠模式,第3位为1则配置为待机模式。Reg49~51用于设置发射和接收的延迟时间。Reg52~55用于设置同步控制字,默认全部为0000H。Reg57用于配置是否启用CRC校验、包长度控制方式等。Reg48~57详细配置数据如下:



  Reg0~28主要是配置发射功率、VCO、RSSI、接收延时、通道选择与控制、AMS测试及控制、BPF和AGC控制、发射与接收数据控制、直流漂移控制、PLL同步控制、数据收发的时序控制、N/VCO参数控制、时钟等。Reg0~28详细配置数据如下:


  Reg0~28初始化完成后再延时2 ms,就可以直接进行数据的收发了。特别要注意的是,帧寄存器Reg48~57必须在RFIC寄存器Reg0~28之前初始化。所有寄存器读写和收发的数据都是通过SPI接口进行的,并且只支持从模式,SPI操作时序如图4所示。在芯片第28脚LDO_TUNE接地时(R1断开,R2接O Ω电阻),其数据在SPI_CLK时钟的上升沿有效;当LDO_TUNE接VDD时(R2断开,R1接0 Ω电阻),数据在SPI_CLK时钟的下降沿有效。只要SPI_SS为高电平,寄存器中的数据就保持不变;只有SPI_SS为低电平时,才能重新改写寄存器中的内容。

  EMl98810有两种检测收发数据包长度的方法:一种是自动在数据帧内检测出来,最大帧长度不能超过255字节。先设置Reg57的第13位为1,则发送或接收数据区中的第1个字节就代表数据的长度,帧控制器会自动控制收发开始与停止。另外一种是保持发射或接收的状态不变,通过外接MSP430F247来控制数据包的正确发送与接收。

  发送数据流程如图5所示。在发射数据时,先设置Reg7的第8位为1,允许在内部状态机控制下进入数据发射状态,再设置Reg7的O~6位为所选通道。在发送前导尾区数据前,MSP430F247必须将数据放人FIFO中,如果数据长度超过63字节,应该分多次写入。FIFO_flag=1表示FIFO为空,MSP430F247利用此信号作为中断请求,保证发送数据写入FIF0的实时性,在数据发送完成后PKT_flag=1。


  如果设置Reg7[7]=1和Reg7[O~6]为与发射相同的通道,则芯片进入自动接收状态,接收数据流程如图6所示。当检测到同步字后会自动进行数据包的接收解码,接收完成后进入待机模式。如果接收数据超过63字节,则有FIFO_flag=1,MSP430F247利用此信号作中断请求以保证读出数据的实时性。

[page]


  在进行超低功耗设计时,MSP430F247可以设置定时器中断。平常处于LPM3或LPM4模式,要发送数据时产生定时器中断,同时控制EMl98-810处于待机或睡眠模式。MSP430F247工作在LPM3模式下电流为O.8μA左右,LPM4模式下电流为0.1μA左右。EMl98810正常情况下发射电流26 mA,接收电流25 mA,待机电流1.9mA;睡眠模式下为3.5μA。若将EMl98810设置为睡眠模式,将MSP430F247设置为LPM3模式,则系统耗电仅为4.3μA,使用干电池供电完全可行。

  MSP430F247通过SPI接口与EMl98810相连,进入LPM3模式和退出LPM3模式的程序如下:


  将EMl98810的Reg48的第2位设置为1,并将SPI_SS设为高电平,则进入睡眠模式;如再将SPI_SS设为低电平,则EMl98810会自动唤醒,退出睡眠模式。

  结语

  经过实际电路连接后测试,数据发送端在进行500kbps速率下连续发送数据时,整个系统电流为28.2 mA,接收数据端的电流为26.1 mA;当发射端进入到睡眠模式时电流为5.2μA;当接收端进入待机状态LPM3后,整个系统电流为l.9 mA。按照2节干电池容量1 300 mAh计算,间隔1 min发送100字节数据,考虑单片机模式切换时间,则在500 kbps速率下:

  发送数据所需时间为5 ms,1小时耗能:

  28.2mA×5ms×60次=8460(mA·ms)

  睡眠模式下1小时耗能:

  5.2μA×3600S×1000ms=18720(mA·ms)

  发送状态下可以工作的时间为:

  (1300mA×3600S×1000ms)/(18720+8460)=172185h

  即2节干电池供电时可以工作20年。同样,可以计算出接收状态下可以工作683小时(大约28天)。因此本设计可以适合长期进行低功耗无线数据采集方面的应用。

参考文献:

[1]. MSP430 datasheet http://www.dzsc.com/datasheet/MSP430_490166.html.
[2]. EMC datasheet http://www.dzsc.com/datasheet/EMC_2342312.html.

关键字:2.4GHz  无线数传系统  MSP430F247 引用地址:基于RF2.4 GHz的超低功耗无线数传系统设计

上一篇:基于DSP的地下微水检测系统
下一篇:基于DSP的新型多功能电能质量监测仪表的设计

推荐阅读最新更新时间:2024-03-16 13:24

基于无线收发模块PTR2030的温度测控系统设计
摘要:PTR2030是超小型、超低功耗、高速率的无线数传MODEM模块。它性能优异,是目前低功率无线数传应用方面的理想器件。文中介绍了PTR2030的主要特点、引脚功能、软件设计、硬件连接方法及具体应用电路。 关键词:无线数传;MODEM;PTR2030 1 概述 由于目前无线收发模块的种类较多,因此如何在设计中选择所需要的模块显得非常关键,正确的选择可以少走弯路,降低成本,更快的将产品推向市场。本文介绍的新型无线收发模块PTR2030就是一种超小型、超低功耗、高速率的无线数传MODEM。它采用串口传输,应用及编程非常简单,传送的效率很高,而且所需的外围元件少,产品开发成本低,功耗低,管脚少,封装小,因而有利于减小PCB板
[应用]
2.4GHz无线收发芯片nRF24E1的原理及应用
摘要:nRF24E1是集成有2.4GHz无线收发器、增强型8051、ADC和其它外设的一款高集成度无线收发芯片,它体积小,功耗低、所需外围元件少,并有很大的价格优势,可代替一些场合的蓝牙应用需求。文中介绍了nRF24E1发芯片的主要特点、内部结构和引脚功能,最后给出了nRF24E1的无线数据包格式和典型应用电路。 关键词:nRF24E1;ISM频段;蓝牙;无线通信;8051 1 nRF24E1的主要特点 nRF24E1是北欧集成电路公司(NORDIC)推出的一款带2.4GHz无线收发器nRF2401和增强型8051内核的无线收发模块。nRF24E1适用于各种无线设备的短距离互连应用场合,工作于ISM(工业、科学和医学)频段
[网络通信]
2.4GHz和1GHz以下的ZigBee技术
ZigBee标准已面市多年,该标准一直面临着与其它无线标准所面临的类似挑战,包括不同的发展阶段,早期采用者的不兼容性,以及ZigBee联盟成员间关于正确发展方向的诸多讨论。 不过,随着公共应用规范的推出,ZigBee标准已进入成熟的发展阶段。任何被允许使用ZigBee标识的方案,首先必须通过ZigBee 应用规范验证,这样就保证了最终客户应用层的兼容。测试机构通过其测试步骤确保所有设备不仅使用相同的网络层标准(即ZigBee Pro功能集)在网上发送数据,而且要保证这些设备之间能够安全通信。此外,测试程序还要验证带有ZigBee认证标识的最终产品已通过严格的测试,从而确保应用程序发送的信息遵从公共应用规范中的某一协议。 这
[网络通信]
基于STM32F103和nRF24L01的近程无线系统设计
    近年来, 随着无线通信技术的发展, 无线通讯设备的集成化越来越高。本文介绍了一种选用高性能、低功耗的32位微处理器STM32F103和射频收发芯片nRF24L01来设计短距离无线数据传输系统的具体方法。     1 系统设计     短距离无线数传系统主要由电源管理器AMC7635、微控制器STM32F103、射频收发器nrf24l01三部分组成。下面分别介绍其关键电路。     1.1 电源电路     本设计的电源采用3.7V锂电池供电, 然后经低压降电源管理芯片AMC7635, 以产生3.0V的电压来为STM32F103和nRF24L01供电, 图1所示是本系统的供电电路。 图1 系统供电电路
[网络通信]
MSP430和nRF905的无线系统设计
  在特殊环境的数据测控应用中,无线数据传输已经越来越广泛地被运用。   MSP430+nRF905的组合特别适合于低功耗、短距离(1OO~200 m)、小数据量的无线数传系统。MSP430 CPU在低功耗应用方面有很大优势,nRF905无线收发芯片具有功耗低、控制简单、可自动处理字头和CRC校验的优点,两者结合组成的数传系统可以在很多产品中得到应用。 1 MSP430简介   MSP430是TI公司新推出的16位系列单片机,在电池供电的低功耗应用中具有独特的优势。其工作电压在1.8~3.6 V之间,正常工作时功耗可控制在2OOμA左右,低功耗模式时可实现2μA甚至O.1μA的低功耗。MSP430具有非常高的集成度,通常在单个
[单片机]
MSP430和nRF905的<font color='red'>无线</font><font color='red'>数</font><font color='red'>传</font><font color='red'>系统</font>设计
基于MSP430F247和TMP275的测温仪的设计方案
1 引言 TI公司的MSP430单片机以独特的低功耗和模块化设计赢得了设计者的青睐。新型MSP430F247其性价比相当高,该16位单片机处理速度快,超低功耗,能节省很多资源;MSP430F247内置I2C模块,方便了程序编写,大大降低了程序的出错率。同时更多的I/O口可以级联更多的外围器件,而无需使用地址数据锁存器件,既方便了程序的编写,也简化了硬件电路的设计。 温度传感器TMP275可直接输出数字信号,而无需取样、放大、滤波和模数信号的转换,可以直接传输给单片机信号处理系统;而且输出信号分辨率可以达到0.0625,测温精度±0.5℃,若使用MSP430F247做控制器,可直接与其自带的I2C模块相连,使用方便。 2
[单片机]
基于<font color='red'>MSP430F247</font>和TMP275的测温仪的设计方案
汽车对2.4GHz无线通信的干扰作用
  本实验主要目的是通过分析汽车上的 电磁干扰 源和实测汽车在2.4 GHz频段产生的辐射性电磁干扰的相对强度,推断其对部署在汽车上的2.4 GHz无线通信设备的干扰作用。   1 汽车的电磁干扰源   电磁干扰产生于干扰源,它是一种来自外部的、并有损于有用信号的电磁现象。汽车对车载电气设备的干扰分为两种。第一种是辐射干扰,电磁波通过自由空间直接透入电子设备,并激励设备内部的电路,在电路上产生相应的干扰能量,使与电路发生逻辑性错误,足够强的电磁干扰甚至可以直接损坏敏感的电子器件;第二种是传导干扰,干扰源通过电源线、信号线等线缆把干扰信号耦合到其他设备,对其他设备的正常工作造成危害。对于独立供电的车载2.4 GHz通信设
[网络通信]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved