推荐阅读最新更新时间:2024-03-16 13:36
基于单片机数控直流稳压电源的设计与实现
1 引言 直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多 功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普 通直流稳压电源品种很多.但均存在以下问题:输出电压是通过粗调(波段开关)及细调(电位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时(如 1.02~1.03V),困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。常常通过硬件对过载进行限流或截流型保护,电路构成复杂,稳压精度也 不高。本文设计了一种以单片机为核心的智能化高精度简易直流电源,克服了传统直流电压 源的缺点,具有很高的应用价值。
[单片机]
AT89S51是怎样出现的它和C51有什么区别
很多初学51单片机的网友会有这样的问题:AT89S51是什么?书上和网络教程上可都是8051,89C51等!没听 说过有89S51 ?! 这里,初学者要澄清单片机实际使用方面的一个产品概念,MCS-51单片机是美国INTEL公司于1980年推出的产品,典型产品有 8031(内部没有程序存储器,实际使用方面已经被市场淘汰)、8051(芯片采用HMOS,功耗是630mW,是89C51的5倍,实际使用方面已经被市场淘汰)和8751等通用产品,一直到现在, MCS-51内核系列兼容的单片机仍是应用的主流产品(比如目前流行的89S51、已经停产的89C51等),各高校及专业学校的培训教材仍与MCS-51单片机作为代表进行理论基础学习。
[单片机]
AT89S51单片机定时计数器的使用技巧详细说明
1. 实验任务 用AT89S51的定时/计数器T0产生2秒钟的定时,每当2秒定时到来时,更换指示灯闪烁,每个指示闪烁的频率为0.2秒,也就是说,开始L1指示灯以0.2秒的速率闪烁,当2秒定时到来之后,L2开始以0.2秒的速率闪烁,如此循环下去。0.2秒的闪烁速率也由定时/计数器T0来完成,也就是一个闪烁灯。 2. 电路原理图 图4.16.1 3. 系统板硬件连线 (1. 把“单片机系统”区域中的P1.0-P1.3用导线连接到“八路发光二极管指示模块”区域中的L1-L4上 4. 程序设计内容 (1. 由于采用中断方式来完成,因此,对于中断源必须它的中断入口地址,对于定时/计数器T0来说,中断入口地址为000BH,因此在中
[单片机]
“嘀、嘀、……”报警声电路设计(产生频率为1KHz)
“嘀、嘀、……”报警声 1. 实验任务 用AT89S51单片机产生“嘀、嘀、…”报警声从P1.0端口输出,产生频率为1KHz,根据上面图可知:1KHZ方波从P1.0输出0.2秒,接着0.2秒从P1.0输出电平信号,如此循环下去,就形成我们所需的报警声了。 2. 电路原理图 图4.18.1 3. 系统板硬件连线 (1. 把“单片机系统”区域中的P1.0端口用导线连接到“音频放大模块”区域中的SPK IN端口上, (2. 在“音频放大模块”区域中的SPK OUT端口上接上一个8欧或者是16欧的喇叭; 4. 程序设计方法 (1.生活中我们常常到各种各样的报警声,例如“嘀、嘀、…”就是常见的一种声音报警声,但对于这种报警声,嘀0.2秒钟
[单片机]
AT89S51单片机对4×4矩阵键盘的控制设计
1.实验任务 如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。对应的按键的序号排列如图4.14.1所示 4.14.1 2.硬件电路原理图 图4.14.2 3.系统板上硬件连线 (1).把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上; (2).把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P
[单片机]
矩阵式变换器双向开关四步换流技术研究
摘要:对矩阵式变换器(MC)中双向开关的安全换流课题进行了研究。分析了各种换流方案,进而提出采用可编程逻辑元件(GAL)的四步换流方案,仿真和实验的结果证实了这种换流方案的可行性与可靠性。
关键词:矩阵式变换器;双向开关;可编程逻辑器件;四步换流
引言
1979年,意大利学者M.Venturini第一次提出了矩阵式变换器存在理论及控制策略。与传统的交—交变频器及交—直—交变频器相比,矩阵式变频器具有明显的优点:高功率因数、低谐波污染、可四象限运行、无中间储能环节、体积小且效率高。随着交流变频调速技术成为当代电气传动中实现自动化和节能的主要技术手段,矩阵式变换器(MC)的研究已成为电力电子技术研究的热点之一。
1 矩阵
[应用]
基于AT89S51单片机数字化机载电源控制保护盒设计
直升机起飞后,由飞机发动机带动发电机发电为机载设提供一个稳定的115 V/400 Hz的交流电。所有用电的机载设备电源都是直接使用115 V/400 Hz或经变换后使用,因此,该电源的稳定性直接关系到机载设备的寿命及飞行安全。机载控制保护盒主要监测发电机电网的电压、频率等信号,当电网出现过压、欠压、过频、欠频、过过频、欠频和差动电流超标时,在安全时间内及时切断主电路和发电机激磁电路转为备用电源供电,从而有效保护机载设备和飞行安全。 某型直升机机载控制保护盒是上世纪80年代的产品,控制电路均由分立元件搭建的模拟电路实现,具有体积大、测量误差大等缺点。本文采用AT89S52单片机设计了一款数字化机载控制保护盒,该数字化机载控制
[单片机]
矩阵式变换器设计中的干扰抑制技术
1 概述
矩阵式变换器是一种强迫换相的交-交变换器,它由9个可控的双向开关,利用PWM控制将交流供电电源直接变换成负载所需的变压变频电源,其结构如图1所示。双向开关使用两个IGBT共集电极反向串联,利用器件内部的续流二极管以阻挡反向电压,结构紧凑,方便简单,开关损耗也较低。输入侧的 L - C 滤波器可有效减少输入电流的开关频率谐波。
图1 矩阵式变换器的原理性结构图
2 EMI分析
矩阵式变换器是AC/AC直接变换,电网和负载会相互直接影响,电网的波动会直接对负载(如异步电机)产生干扰;用IGBT和反并联二极管构成的双向开关,以及它们的控制电路DSP和CPLD
[电源管理]