基于FPGA/MCU结构的线性调频高度表

发布者:祝福的4号最新更新时间:2014-10-14 来源: eefocus关键字:MCU  FPGA  XC2V500  Xilinx 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

     无线电高度表不仅可以精确测量飞行器与地面或海面的相对高度,而且还可以测量地表 粗糙度、海洋波浪高度等多种参数,在飞机的自动着陆、自动导航、地形匹配等领域得到了 广泛的应用。无线电高度表主要分为调频连续波体制和脉冲体制两种,调频连续波体制适合 1500m 以内的低高度应用,脉冲体制适合1500m 以上的中高高度应用。本文介绍了一种基于 FPGA/MCU 结构的线性调频(LFMCW)连续波高度表,具有精度高,结构简单,可靠性高,成 本低等特点。


  2 工作原理
  线性调频连续波高度表的基本原理为[2]:采用三角波线性调频微波振荡源,经发射天线 辐射等幅调频波,经过与飞行器飞行高度成正比例的时间延迟τ,由地面发射并被接收天线接 收,经混频后输出差拍信号fb,该信号经窄带滤波器选频后,被一个增益随高度变化的放大 器放大、滤波,送到跟踪鉴频器。跟踪鉴频器输出高、低电平表示差拍信号是否进入跟踪带 内,控制单元根据保持或调整三角波的斜率,使差拍信号始终落入跟踪带内,保持恒定值。 整个系统通过地面构成闭环,飞行器的高度由三角波的斜率和最大频偏Δf 来决定。
 
  其主要性能指标为:
  工作频率:C 波段
  体制:LFMCW(线性调频连续波)
  测高范围:0?1500m
  距离分辨率:1m
  高度数据接口:RS422,9600 波特率
  该高度表属于收发天线分开、三角波调频、频谱前沿跟踪、恒定差拍式无线电高度表,其工作原理如图1 所示。

  图1 线性调频高度表工作原理图 上图中,三角波发生器输出信号的幅度是一个常数,而其斜率是控制电压的函数。在测 高过程中,通过测高回路自动校正,使调制信号的斜率随高度而变化,以保持差拍恒定。变 化规律是高度升高,斜率增大;高度降低,斜率减小。跟踪鉴频器判别差拍信号fb 是否进入 跟踪带内,如是则输出锁定信号。跟踪鉴频器的中心频率为225kHz,带宽仅为30kHz 左右, 使高度表有较高的抗噪声和抗干扰的能力。在没有跟踪锁定信号时,高度表进入搜索状态, 变化三角波的斜率,从最低高度到限制的最高高度周期地扫描,并根据跟踪鉴频器是否输出 锁定信号进行调整。当调制斜率对应飞行高度时跟踪鉴频器输出高电平,高度表环路锁定并 保持跟踪地面发射的信号。
 
  接收、发射天线选用微带集成平板天线,天线间距不小于1m,使收发隔离度大于70dB。 天线的3dB 带宽为300MHz,旁瓣电平不大于-12dB,驻波比S=2,效率η≈80,总尺寸不大于 15cm×15cm。
 
  收发组件采用自差结构,输出为零中频的差拍信号,其频率跟地面高度成正比。VCO 的 调制带宽最高可达200MHz,调制线性度优于1.2。组件的接收增益30dB,噪声系数3.5dB。 视放组件对差拍信号进行选频放大,总增益不低于80dB,增益控制范围不低于90dB。
 
  选频滤波器为定制的机械滤波器,中心频率225kHz,带宽30kHz。主放大器选用AD 公司的视 频放大器AD*,它内部集成了两个放大器模块,可以单独使用其中的任何一个或将两个级 联使用以提高增益和扩大动态范围,每个放大器模块的增益最大可达54.4dB,增益控制范围 48.4dB。
 
  3 信号处理组件
  3.1 硬件设计
  信号处理组件完成地面高度的搜索/跟踪、AGC、STC 等功能,其电路框图如图2 所示, 核心是1 片FPGA 和1 片MCU,通过软件算法实现大部分信号处理功能。

图 2 信号处理组件电路框图

  地面高度的搜索/跟踪是FPGA 和MCU 根据锁定门限判决电路的输出状态,按一定算法改 变VCO 调制信号的频率,使差拍信号落入225kHz 的跟踪带内。在地面高度的搜索过程中,VGC 电压与高度的对数呈线性关系,从而实现STC(时间-灵敏度控制)功能。在地面高度的跟踪 过程中,VGC 电压受控于饱和门限判决电路的输出状态,饱和时减小VGC 电压,直到差拍信 号的强度低于饱和门限,降低地面回波强度对测高精度的影响,从而实现AGC(自动增益控 制)功能。[page]
 
  FPGA 选用Xilinx 公司的XC2V500[4],完成高速信号处理算法的运行,如VCO 调制信号 的产生、VGC 控制电压的生成、搜索/跟踪的控制等。外围的高速D/A 采用AD 公司的AD9754AR, 40MSPS 采样率,14 位分辨率,能满足VCO 调制信号对其线性度的要求。AD9754AR 采用差分 电流输出接口,以抑制共模干扰,通过运放将电流转换成电压输出。
 
  VGC 接口采用D/A 转换器和运放,来产生精密的VGC 电压,VGC 电压的输出范围为0?9V。 D/A 转换器选用并行12 位D/A 转换器AD7392AR,速度比较快。
 
  MCU 选用SST 公司的8 位单片机SST89V564RD[5],64K Flash 编程空间,完成高度表状态 的控制、高度数据的校正/补偿等工作。RS422 接口采用MAXIM 公司的AD844E,全双工工作, 既可输出地面高度数据,也可通过该接口实现SST89V564RD 的在线编程和在线仿真。
 
  MCU 与FPGA 之间采用8 位的数据/地址复用总线接口,速度快,通过访问特定地址的寄 存器来实现逻辑控制和数据的读取。SST89V564RD 的工作电压为3.3V,可直接与FPGA 进行通 讯,不需进行电压转换。
 
  3.2 软件设计
 
  该高度表的软件设计包括两部分:一部分是FPGA 的编程,采用VHDL 语言编写;另一部 分是MCU 的编程,采用汇编语言编写。两部分软件共同实现高度表的搜索、跟踪等功能。
 
  a. 搜索算法
 
  当高度表的差拍信号未落入225kHz 的跟踪带内时,高度表进入搜索状态:通过改变调 制频率fm从低高度到高高度进行搜索。fm的值是离散的,满足fm=112.5kHz/n,n 为分频系数, n=1?1500(正整数)。
 
  采用了线性搜索算法,分频系数n 从小到大连续变化,使高度表从低到高,以距离分辨 率Δh=1.0m 为步长连续搜索,即fm=112.5kHz/n,n=1→1500。当差拍信号fb0=225kHz±15kHz 时,锁定门限输出高电平,高度表进入跟踪状态,由跟踪鉴频回路与地面组成闭环系统,伺服于高度的变化。
 
  b. 跟踪算法
 
  当高度表进入锁定状态时,由跟踪鉴频回路与地面组成闭环系统。由于线性调频信号的 特殊性,其谱线是离散的,当高度变化时,各个频率成分的信号都有,只是各个谱线的幅度 不同。在低高度上,由于跟踪带宽很窄(30kHz),调制频率变化量Δfm大于30kHz 时,造成 高度表失锁。另外,由于面目标的回波差拍信号的能量并不是集中在一根谱线上,而是多根 谱线或谱线带具有相同量级的回波能量,要使高度表能跟踪到最低谱线,即最低高度,要采 用具有频谱前沿跟踪能力的算法。
 
  我们设计了误差抖动跟踪算法,具有频谱前沿跟踪能力,其基本思路为:在当前跟踪高 度上产生一个误差搜索区域,在此区域内从低到高进行线性搜索,使高度表出现失锁→锁定 的状态变化,从而跟踪到最低高度。
 
  n 为当前高度所对应的分频系数,误差量Δn 取为5(对应的高度误差量为±5m),在(n- Δn)→(n+Δn)范围内从低到高进行搜索。如n 小于6,则从1→(n+Δn)进行搜索。如 该误差搜索区域内的最小n 值都能满足锁定条件,则以该最小n 值为当前n 值,再产生误差 搜索区域进行跟踪。如在整个误差搜索区域内都未出现锁定信号,高度表从跟踪状态转为搜 索状态。 误差抖动跟踪算法的流程图如图3 所示。


图 3 误差抖动跟踪算法的流程图

  4 飞行试验
 
  该高度表采用动力滑翔机,进行了多个架次的飞行试验,飞行地貌有城市、田地、树林、 水面等,最高飞行高度超过1500m。试验过程中高度表性能稳定,数据完整,50m 以下高度的 测高精度可达1m。
 
  5 结束语
  本文介绍了一种新型调频连续波高度表,主要创新点在于:采用了FPGA/单片机的硬件 平台,通用性强,并具备现场软件升级能力;通过软件算法实现了高度搜索、高度跟踪、STC、 AGC 等功能,改变信号处理算法和控制软件能实现多种功能,满足更多应用场合的需要;采 用恒定差拍结构,抗干扰能力强,并具有频谱前沿跟踪能力;具有0?1500m 的大范围测高能 力,在低高度上具有1m 的测高精度。

关键字:MCU  FPGA  XC2V500  Xilinx 引用地址:基于FPGA/MCU结构的线性调频高度表

上一篇:基于MCU和基于ASIC的LED可控硅调光方案对比与解析
下一篇:基于H.323高性能MCU的设计与实现

推荐阅读最新更新时间:2024-03-16 13:42

基于FPGA的TCP粘合设计与实现
传统的数据分流一般基于三层、四层交换,不能在应用层解析数据,导致数据在后端服务器解析后还要相互重新分发,增加了服务数据传输的开销,为解决该问题,可以在客户端与服务器之间采用应用级代理服务器,利用该服务器专门对数据包进行解析分发,但是该方式下,数据要进入TCP/IP协议栈,处理速度慢,同时代理服务器还需要与客户端、服务器双方通信,需要处理的数据量非常大,因此在集群应用中,特别是大规模负载平衡集群系统中很少使用应用级代理。 在应用级代理的基础上,为进一步提高数据处理的速度,提出了TCP粘合技术 。该技术在通信双方建立通信之处对双方的握手信号以及通信原语进行分析,获取必要的信息,决定数据的流向,一旦双方开始通信,该代理就不再对数据进行分
[嵌入式]
基于51系列单片机的通用软件UART的实现
0 引言 嵌入式系统开发已经进入了32位时代,8位MCU市场趋于稳定,32位的MPU代表着嵌入式技术的发展方向。然而,作为嵌入式系统低端应用的代表,8位单片机在家用电器、仪器仪表等领域仍然被广泛应用;而且随着IC技术的不断发展,单片机的扩展能力越来越强,8位单片机的开发、应用仍然受到很大重视。 随着网络技术和通信技术的不断发展,对单片机的通信能力要求越来越高,异步通信技术通信距离远、节约成本、通信可靠,特别是以其通信速度越来越快的特点广泛应用在分级、分层和分布式控制系统以及远程通信中,尤其适合单机转向多机或联网的应用方向。目前普遍应用的MCS-51系列和其他一些专用的单片机通常只具有一个UART异步串行通信接口,而在实际
[单片机]
基于51系列<font color='red'>单片机</font>的通用软件UART的实现
LCD12864万年历单片机程序+实物制作+Proteus仿真
制作出来的LCD12864万年历实物图如下: LCD12864万年历仿真原理图如下(proteus仿真工程文件可到本帖附件中下载) 电路原理图如下: 单片机源程序如下: *----------------------------------------------- 名称:12864字库液晶显示 内容:通过显示字符、数字、汉字和图片测试液晶基本功能 ------------------------------------------------*/ #include reg52.h #include intrins.h #include delay.h sbit RS = P3^5; sbit RW = P3
[单片机]
LCD12864万年历<font color='red'>单片机</font>程序+实物制作+Proteus仿真
单片机学习笔记 —— 8位数码管动态扫描
我们知道,依次只能让一个数码管/led灯亮起来,但是我们可以通过高频动态扫描得到8位数码管同时亮起来,这里介绍如何实现。 一、八位数码管 1、八位数码管原理图 下图为原理图: 段选信号:P0 位选信号:P2 译码使能:P2.3非 (图中已用蓝色框圈出) 2、控制信号 段选信号:一位数码管包含8个二极管,a-g,如图: 8个二极管共阴极,以位选信号作为使能信号 位选信号:位选信号为SEL P2 ,如果位选信号为101,结果译码器译码得到0001 0000(单热点编码方式),选择第五位数码管 显示数字:在位选有效时,通过设置段选信号来设置数值,如段选为P0=10111110时,ABCDEFG对应为10111
[单片机]
<font color='red'>单片机</font>学习笔记 —— 8位数码管动态扫描
51单片机矩阵键盘响应程序
51单片机矩阵键盘响应程序 #include reg51.h // P0端口接LED // P0端口接数码管 // P3端口接矩阵键盘 #define LED P0 #define KEY P3 #define DIG P0 unsigned char GetKey(void); void delay10ms(void); // 独立数码管的段码表 unsigned char val = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, 0xa1, 0x86, 0x8e}; void main(void) { unsig
[单片机]
51<font color='red'>单片机</font>矩阵键盘响应程序
InfineonTLE983x智能汽车继电器驱动解决方案
Infineon公司的TLE983x是基于智能LIN和集成了8位MCU的继电器驱动器和接口电路,MCU内核为XC800系列和标准的8051核兼容,工作频率高达40MHz,具有专用功率驱动器,控制和通信模块,主要用在车窗升降,座椅,风扇控制,开关面板接口和键盘接口.本文介绍了TLE983x主要特性和优势,方框图,智能车窗升降模块框图以及评估板电路图,材料清单和PCB布局图. The TLE983x is a single chip solution that integrates a high performance 8-bit microcontroller derived from the established XC800 fa
[电源管理]
InfineonTLE983x智能汽车继电器驱动解决方案
单片机 Modbus 多机通信程序设计
给从机下发不同的指令,从机去执行不同的操作,这个就是判断一下功能码即可,和我们前边学的实用串口例程是类似的。多机通信,无非就是添加了一个设备地址判断而已,难度也不大。我们找了一个 Modbus 调试精灵,通过设置设备地址,读写寄存器的地址以及数值数量等参数,可以直接替代串口调试助手,比较方便的下发多个字节的数据,如图18-7所示。我们先来就图中的设置和数据来对 Modbus 做进一步的分析,图中的数据来自于调试精灵与我们接下来要讲的例程之间的交互。 图18-7 Modbus 调试精灵 如图,我们的 USB 转 RS485 模块虚拟出的是 COM5,波特率9600,无校验位,数据位是8位,1位停止位,设备地址假设为1。 写寄存器
[单片机]
<font color='red'>单片机</font> Modbus 多机通信程序设计
基于C8051F330便携式生理参数监测仪设计
    随着人们生活水平的提高,越来越多的人希望通过简便的方式了解身体基本状况。因此人体生理监护仪开始出现并呈不断增多的趋势,已经由过去的单一测试仪发展为现在的多参数监护仪。 在实际生活中,生理参数监测仪多是基于PC机平台的多参数测量、价格昂贵、体积庞大、不便于移动。现在多数生理参数监测仪无法准确的实时测量人体运动时的生理参数,导致有些人特别是老年人运动强度过大,对身体造成较大伤害。而教练员因无法准确掌握运动员运动时生理参数变化,而不能“因材施教”,有针对性的制定训练方案,所以运动员训练方式都是大众化训练。综上所述,开发一种体积小、价格低,基于嵌入式系统的便携式生理参数监测仪就具有重要的意义。 1 系统方案     本系统采用
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved