一种反射式红外心率检测仪设计

发布者:HarmonySpirit最新更新时间:2014-11-03 来源: 21ic关键字:红外心率检测仪  uPSD3234  ADC  PWM 手机看文章 扫描二维码
随时随地手机看文章

  脉搏波源于心脏搏动并由心脏向外周动脉传播。它所呈现出的形态、强度、速率和节律等综合信息,很大程度上反映出人体心血管系统中许多生理病理的血液特征。心率是一项重要的生理指标。它是指单位时间内心脏搏动的次数,是临床常规诊断的生理指标。

  为了测量心率信号,有许多技术可以应用,例如:血液测量,心声测量,ECG测量等等。本文探讨利用血液的高度不透明性及组织与血液透光性的极大差异,通过光电脉搏传感器获取脉搏信号,经过模-数转换(A/D)后,采样数据经数字化分析处理,以实现对人体心率的测量。

  1  心率检测仪组成及工作原理

  心率检测仪的主要组成如图1所示。由光电传感器采集脉搏信号,经过前置放大、滤波、单片机uPSD3234A自带的A/D转换模块采样得到脉搏信号的数据并存入存储器中;单片机对所得的数据进行数字信号处理并计算出心率值,结果送显示模块和存储器中。

数字化心率检测仪原理框图

图1 数字化心率检测仪原理框图

  1.1 心率信号采集预处理电路

  脉搏信号采集预处理电路主要是将脉搏波转换成电信号,并进行初步高频滤波预处理。其关键部分就是光电式脉搏传感器。光电式脉搏传感器按光的接收方式可分为透射式和反射式两种。

  反射式不仅可以精确测得血管内容积变化,而且在实际应用中反射式只需将传感器接触身体任何部位,当照射部位的血流量随心脏跳动而改变时,红外线接收探头便接收到随心脏周期性地收缩和舒张的动脉搏动光脉冲信号,从而采集到心脏搏动信号。

  本设计采用了反射式红外传感器。图2所示,光电式脉搏传感器采用红外对管KP-2012F3C和KP-2012P3C,反射式排列。KP-2012F3C具有良好的表皮照明度,电流一般设在20mA,亮度由软件通过PWM电流来进行控制,这样能够使红外LED工作在饱和区域,发出稳定光强的光。

  KP-2012P3C晶体管采用交流耦合结构来增强对微弱信号放大。经晶体管检测出来的信号采样时分两路。一路是直流信号线路。它是晶体管输出经射随输入单片机的A/D转换通道口0,可用来检测晶体管是否处于有效工作状态;另一路是交流信号线路。它是先经一射极跟随器输入到两级滤波成形电路然后再输入单片机的A/D转换通道1.该滤波电路为两级带通滤波电路,由于脉搏波的频谱蕴含丰富病理信息,特别是在5~40Hz这个区间的频谱携带了大量与冠心病病变有关的信息,故考虑到今后功能的扩展,预处理电路的上下限频率设计为48Hz和0.86Hz.

脉搏信号采集预处理电路

图2 脉搏信号采集预处理电路

  1.2 uPSD3234单片机

  本文采用ST(意法半导体)公司的新型单片机uPSD3234作为系统的核心部件,它以增强型MCS-51内核8032单片机为基础,具有丰富的外围设备,集成了PSD(ProgrammableSystemDevice,可编程外围器件)模块,并含有大容量FLASH和RAM的存储器,集成I2C和USB接口电路,数字显示(DDC)通道,5个脉宽调制(PWM)控制器,4路8位AD转换器,可编程逻辑器件(PLD),是一个典型的具有SOC特征的高速单片机。因此不需要增加复杂的外围电路就完全能满足设计要求。

  uPSD3234片内的USB模块支持低速的USB1.1通信协议,心率检测仪采样数据以及信号处理过程中得到的数据就可以传输到PC机存储及进一步的分析处理。

  2  心率信号数字处理及算法

  在测量过程中,预处理电路探测到的脉搏信号容易受到外界干扰,需要对干扰噪声进行处理。

  一般可以通过两种途径对噪声处理:一是增加滤波电路;二是从数字信号处理的角度,通过算法来减少噪声。如果在外围加入滤波电路会使成本增加,并影响仪器的便携性,另外由于干扰的不确定性,滤波的效果不会很好。软件滤波尽管会占用一定的系统资源,但成本低、可靠性高、稳定性好,在处理速度允许的条件下,具有灵活、方便、功能强的优点。本文主要采用数字滤波的方法来进行处理,其中最重要的算法是匹配滤波算法。

  所谓匹配滤波器就是使滤波器输出信噪比在某一特定时刻达到最大并由此导出的最佳线性滤波器。匹配滤波原理:设输出信噪比最大的最佳线性滤波器的传输函数为H(ω),滤波器输入信号与噪声的合成波为:

公式

  式(1)中,s(t)为输入数字信号,其频谱函数为S(ω),n(t)为高斯噪声。

  由于该滤波器是线性滤波器,满足线性叠加原理,因此,滤波器输出也由输出信号和输出噪声两部分组成,即:

公式

  式(2)中,输出信号的频谱函数为S0(ω),其对应的时域信号为:

公式

  滤波器输出噪声的平均功率为:

公式

  所以,在抽样时刻t0,线性滤波器输出信号的瞬时功率与噪声平均功率之比为:

公式

  从式(3)可见,在输入信号给定的情况下,输出信号比r0只与滤波器传输函数H(ω)有关。根据施瓦兹不等式:

 

  根据帕塞瓦尔定理有:

公式

  式(5)中,E为输入信号的能量,故得关系式:

公式

  根据施瓦特不等式中等号成立的条件X(ω)=kY*(ω),k为任意常数,可得不等式中等号成立的条件为:

公式

  式(7)中,K为常数,通常可选择为k=1.

  S*(ω)是输入信号频谱S(ω)的复共轭。该滤波器在给定时刻t0能获得最大输出信噪比2E/n0。[page]

  这种滤波器的传输函数H(ω)除相乘因子Ke-jωt0外,与信号频谱的复共轭相一致,所以称该滤波器为匹配滤波器。

  易得到匹配滤波器的脉冲响应为:

公式

  红外线接收探头获取的动脉搏动光脉冲信号的数字匹配滤波的过程是通过输入信号序列s(n)与匹配滤波器的冲击响应序列h(n)求卷积的方法来实现的。

  由于匹配滤波器只匹配相应的输入信号,一旦输入信号发生变化,原来的匹配滤波就不再称为匹配滤波器了,而脉搏波十分复杂,即使同一人的脉搏也不是每一周期都相同,所以需要针对脉搏信号的特征设计匹配滤波器。根据脉搏波的形成机理和脉搏的特征点,设计了四种脉搏波微分波形作为匹配滤波器的模板,如图3所示。模板长度为100,恰好是微分波形主脉冲峰的宽度。

匹配滤波器的模板

  工作时,通过比较四个模板的输出结果来确定使用哪一个滤波器的输出值。

  本设计利用uPSD3234内置的ADC对经预处理后的脉搏信号进行采样,采样频率为500Hz.

  下面将简单介绍整个数据处理过程:

  1)经ADC通道0和通道1采样得到信号波形图如4图所示。

采样得到信号波形图

  2)对采样的交流信号数据进行低通滤波。由于设计仅实现心率检测的功能,故此低通滤波截止频率设计为8.5Hz,部分波形如图5所示。

低通滤波输出

  3)利用脉搏波形态上具有陡峭上升沿的特点,通过微分运算将其突出出来,部分波形如图6所示。

数字微分波形

  4)检测上面微分波形图的负脉冲信号需要用到匹配滤波器。另外,由于匹配滤波输出值会因为心率检测仪的使用对象、放置位置等因素的影响而产生很大的变化,所以在设计中还需要其能够自动调节阈值。信号大于阈值,则认为是检测到了一个心跳信号。匹配滤波及检测输出的效果如图7所示。

匹配滤波及检测输出的效果

  以上信号处理得到的心跳检测信号即是反映人体瞬时心跳的信号,据此可用一种中值算法精确地计算出测量对象的心率。此中值算法为:如果心跳检测信号的两个脉冲间隔在人心跳的正常间隔内,则记录间隔时间,否则跳过。在记录足够的心跳间隔后即可算出这些间隔的中值。根据中值可以规定这些间隔的上下边界。处在上下边界之间的值视为有效间隔值。当有效间隔值的数目超过设定的数量时,就可以算出平均间隔值。由于采样频率为500Hz,所以每个间隔为2us.由此得出比较精确的心率。

  3  软件设计

  系统软件流程如图8所示。主要有显示驱动程序、按键处理程序、信号处理程序、心率检测程序、USB通信服务程序等。

软件流程图

图8 软件流程图

  4  结语

  本文所设计的反射式红外心率检测仪主要采用了匹配滤波等数字信号处理方法得到心率数据,将微电子技术与生物医学工程技术紧密地结合在一起,达到了设计要求,目前,本设计已成功应用于健身产品跑步机中,具有一定的创新性和实际应用价值,并且有良好的市场推广价值。

关键字:红外心率检测仪  uPSD3234  ADC  PWM 引用地址:一种反射式红外心率检测仪设计

上一篇:基于MSP430单片机的家用烟雾报警器的设计
下一篇:基于MSP430F2132的温差式原油流量传感器设计

推荐阅读最新更新时间:2024-03-16 13:44

51单片机PWM程序详解
#include reg51.h //程序是基于KEIL-C51编写,引入8051头文件 sbit P10=P1^0; sbit P11=P1^1; unsigned int scale; //占空比控制变量 void main(void) { unsigned int n; //延时循环变量 TMOD=0x02; //定时器0,工作模式2(0000 0010),8位定时 TH0=0x06; //定时250us(12M晶振) TL0=0x06; //预置值 TR0=1; //启动定时器0 ET0=1; //启动定时器0中断 EA=1;
[单片机]
51单片机<font color='red'>PWM</font>程序详解
隔离式ADC架构利用分流电阻进行三相电能计量
传统三相电表使用电流互感器(CT)检测相电流和零线电流。CT的优势之一是能够在数百伏的电力线与电表地(通常连接到零线)之间提供固有的电隔离。CT可以实现良好的线性度;通过调整匝数比和负载电阻,可以灵活地测量各种类型的电流。然而,CT用于电表时也有一些缺点。首先,外部直流磁场可能会使CT的磁芯饱和。现在,非常强大的稀土直流磁体很容易为普通民众所获得并应用于窃电。其次,电源电子设备也能使CT饱和,例如用于分布式太阳能发电的直连逆变器,它在线路上产生直流电流。制造商可以通过屏蔽和使用直流兼容CT来克服这两种影响,但这会增加成本。有人说,无论是何种CT,都可以找到一个永磁体来干扰它。第三,CT会引入一个与线电流频率相关的测量相位延迟。如果应
[测试测量]
隔离式<font color='red'>ADC</font>架构利用分流电阻进行三相电能计量
如何组合使用低通滤波器和ADC驱动器获取20 V p-p信号
问题: 为何要组合使用低通滤波器(LPF)和模数转换器(ADC)驱动器? 答案: 为了减小模拟信号链的尺寸,降低其成本,并提供ADC抗混叠保护(ADC采样频率周围频段中的ADC输入信号不受数字滤波器保护,必须由模拟低通滤波器(LPF)进行衰减)。20 V p-p LPF驱动器一般用于工业、科技和医疗(ISM)设备中,该设备必须使用具有更低满量程输入的高速ADC对传统的20 V p-p信号范围进行数字化处理。 简介 通过驱动ADC实现优化的混合信号性能,这是一大设计挑战。图1所示为标准的驱动器ADC电路。在ADC采集期间,采样电容将反冲RC滤波器中指数衰减的电压和电流。混合信号ADC驱动器电路的最佳性能
[模拟电子]
如何组合使用低通滤波器和<font color='red'>ADC</font>驱动器获取20 V p-p信号
MAX19505双通道、模/数转换器(ADC)
MAX19505的模拟输入可接受0.4V至1.4V的宽输入共模电压范围,允许宽范围的RF、IF以及基带前端直流耦合到输入端。在基带至400MHz以上的输入频率范围内,MAX19505具有优异的动态性能,非常适合零中频(ZIF)和高中频(IF)采样应用。fIN = 70MHz、fCLK = 65MHz时,典型信噪比(SNR)为49.8dBFS,典型无杂散动态范围(SFDR)为69dBc。   MAX19505工作在1.8V电源。此外,内部自检测电压调节器可工作在2.5V至3.3V电压(AVDD)。数字输出驱动器工作在1.8V至3.5V独立的电源电压(OVDD)。VAVDD = 1.8V时,每通道的模拟功耗仅为43mW。除了具有较低
[模拟电子]
MAX19505双通道、模/数转换器(<font color='red'>ADC</font>)
了解Atmega16 / 32 AVR微控制器中的脉冲宽度调制(PWM
冲宽度调制(PWM)是一种功能强大的技术,通过保持频率恒定来改变脉冲宽度。该技术目前在许多控制系统中使用。 PWM的应用不受限制,它被广泛应用于电机速度控制、测量、功率控制和通信等。在PWM技术中,可以使用数字信号轻松生成模拟输出信号。本篇文章将帮助您了解PWM,其术语以及如何使用微控制器实现它。在本文中,我们将通过改变LED的强度来演示使用AVR Atmega16微控制器的PWM。 AVR微控制器Atmega16中的PWM引脚 Atmega16有四个专用PWM引脚。这些引脚是PB3(OC0)、PD4(OC1B)、PD5(OC1A)、PD7(OC2)。 Atmega16还有两个8位定时器和一个16位定时器。 Timer0
[单片机]
了解Atmega16 / 32 AVR微控制器中的脉冲宽度调制(<font color='red'>PWM</font>)
STM32八路ADC采用DMA方式
STM32八路ADC采用DMA方式 采集的数据如下 程序打包地址 有DMA方式和非DMA 方式 https://download.csdn.net/download/qq_36958104/11352188 #include adc.h #include sys.h #define ADC1_DR_Address ((u32)0x4001244C) __IO u16 ADC_ConvertedValue; /*配置采样通道端口 使能GPIO时钟 设置ADC采样PA0端口信号*/ void ADC1_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitS
[单片机]
美国国家半导体全新WiMAX 12位ADC,SFDR可轻松攀越业界峰值
这几款12及14位的芯片采用全新架构,可令无线通信基建应用设计支持新一代的结构,减少元器件数目,提高功率效率 二零零七年八月二十二日 -- 中国讯 -- 美国国家半导体公司 (National Semiconductor Corporation)(美国纽约证券交易所上市代号:NSM)宣布推出两款170MSPS的12位模拟/数字转换器及一款155MSPS的14位模拟/数字转换器。这几款模拟/数字转换器不但可提供高达1.1GHz的满功率带宽,而且还可支持双倍数据传输率,低电压差分信号传输(LVDS)输出及CMOS输出功能,适用于要求极为严格的WiMAX及3G无线通信应用。在高中频采样接收器的应用中,即使输入频率超过250MHz,这
[新品]
Elmos推出恒流模式LED驱动解决方案
德国多特蒙德, 艾尔默斯公司( Elmos )日前宣布推出最新汽车级,可用于 LED 驱动的恒流模式 PWM 控制器。该芯片主要适用于汽车领域,可用于汽车 LED 灯驱动,如前大灯 (High beam, Low Beam) 、日间行车灯( DRL )、转向指示灯 (Turn Signal Indicator) 、雾灯以及尾灯的应用中。   E522.3X 系列产品包括了 E522.31, E522.32, E522.33 以及 E522.34 一共四款芯片,该家族是一款具备了固定开关频率、高效率以及可支持多个 LED 串联的高压恒流控制芯片。由于他们采用了高边电流检测模式,因此可以非常灵活的配置变换器的电路拓扑结
[电源管理]
Elmos推出恒流模式LED驱动解决方案
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved