基于单片机的高速列车轴温集中监测系统

发布者:心灵的旅程最新更新时间:2015-01-04 来源: c114关键字:无线传输  列车轴温  监测系统 手机看文章 扫描二维码
随时随地手机看文章

0 引言

列车在高速运行的过程中,机车与钢轨的频繁冲击会造成车辆轴承的发热,当轴承磨损和产生缺陷时,会造成机损从而影响车辆的正常运行,甚至出现热切轴,直接导致火车发生故障翻车,给国家和社会在铁路运输造成巨大的经济损失。目前我国大部分采用红外轴温监测系统,但这种设备易受外界环境影响、探测点受车身摆动影响定位困难等原因,使得轴温过高告警兑现率低、误报率极高、而且外界因素对其工作状态容易产生很大的干扰,失真严重,极有可能给发出错误的温度提示,影响铁路运输的正常工作[1-2].针对这种情况,设计了系统简洁、布局小巧、灵敏度高、收发信息能力快速的高速列车轴温集中监测系统,可在第一时间发现运行中的列车轴承是否温度过高,如轴温超过预设定值,就发出报警信号,机车司机可及时的停车检查,有效地降低事故发生率,避免因事故而产生的巨大经济损失,维护铁路运输的正常运行。

1 系统总体设计

高速列车有多节车厢组成,每节列车车厢有两个车轴架,每个车轴架上有两个车轴,每个车轴两端又有两个轴箱。设计中在每个轴箱上安装一个轴温传感器,每个轴架上设一个监测节点。绝大多数列车轴温报警装置仍然沿用了传统的单车分散报警的模式,又考虑到列车存在经常调换机车车头和车厢的问题,所以在传输方式上系统选用了2.4G无线通信传输方式。

为了防止数据阻塞,采用了轮询问答方式进行通信,大大提高了通信质量和可靠度。系统主要由多个监测节点和一个部署在驾驶舱内的监测台组成。系统结构示意如图1所示。

图1 系统结构示意图

图1 系统结构示意图

监测节点通过温度传感器将模拟信号转换成数字信号,实时地将列车每个车轴的轴温情况传送到安装在机车头的监测控制台,进行分析、显示,供机车司机或者地面车辆检修部门随时监测车辆运行时轴温的变化情况。在列车运输过程中,当出现轴温异常时,监测台能发出报警信号给司机,提醒及时停车采取一定的措施排除故障,降低了机车在运行过程中因轴温过高发生事故的几率,从而确保列车运行的安全。

2 硬件结构

系统的无线节点硬件主要由微控制器ATmega128L、温度传感器PT100、无线通信模块nRF24L01、存储器K9F5608和电源管理模块等组成。其中监测台还包括报警和显示屏单元。

硬件部件的控制器单元主要功能在于控制温度传感器采集列车的轴温信息,并对信息进行处理和转发,以及对接受到的数据进行分析、显示。数据采集单元主要是通过温度传感器对轴温信息的采集。无线通信单元用于发送采集到的轴温数据,并与列车监测台进行实时通信。节点硬件构成如图2所示。

图2 节点硬件构成

图2 节点硬件构成

2.1 微控制器ATmega128L

考虑到控制器既要满足系统的需求,又要保持低功耗和小体积的特性,故选用了8位微控制器ATmega128L,相对于其他通用的8位微控制器来说,它具有非常丰富的资源,工作于16MHz时性能高达16MIPS,具有片内128k字节的程序存储器,4k字节的数据存储器和4k字节的E2PROM;具有两个16位定时器/计数器;具有53个通用I/O 口线、实时时钟RTC、两个USART、可工作于主机/从机模式的SPI串行接口、8路10位ADC、两路8位PWM、与IEEE1149.1规范兼容的JTAG测试接口用于片上调试,以及6种可以通过软件选择的省电模式。控制器的ADC口与PT100的输出连接,SPI接口与无线通信模块nRF24L01连接实现数据的收发,PWM口用来驱动监测台的报警单元,数据总线和地址总线与存储器配合使用。

2.2 无线通信模块nRF24L01

nRF24L01是工作在2.4GHz~2.5GHz的ISM 频段的单片射频收发器,内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,支持Shock-Burst和Enhanced Shock-Burst两种数据传输方式,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6dBm的功率发射时,工作电流也只有9mA,接收时,工作电流只有12.3mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便,接口最高速率可以到达8Mbps,工作电压1.9~3.6V,采用SPI接口进行数据的收发,无线数据的传输速率最高达2Mbps,并有自动应答和自动重发射功能。输出功率、频道分配及协议的选择可以通过SPI接口进行设置[3].

2.3 温度传感器PT100

常用的接触式测温传感器有热电偶、热电阻、半导体石英晶体等,铂热电阻在0℃时的电阻值称R (0℃)和100℃时的电阻值称R (100℃)以及R (100℃)/R (0℃)叫做比值W100.监测节点温度传感器采用的是铂电PT100,PT100的含义为(0℃)时的名义电阻值为100Ω,在温度作用下,铂热电阻丝的电阻值随之变化而变化,且电阻与温度的关系即分度特性完全和IEC标准等同,因此PT100主要用来测量-200~+600℃的温度。铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正[4].校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正需要在微处理系统中使用,将铂电阻的电阻值和温度对应起来后存入EEPROM 中,根据电路中实测值以查表方式计算相应温度值。常用的Pt电阻采样电路有两种:一为桥式测温电路;另一为恒流源式测温电路。

系统中监测节点采用的是是第一种桥式电流测温电路,其具有测量准确度高、测量范围大、复现性和稳定性好等优点。

2.4 存储器K9F5608

存储器K9F5608 是三星公司生产的32MBytes容量的NAND Flash芯片,用来存储临时的轴温数据,当通信中断时可以把数据存在K9F5608中,待通信恢复正常后再将这些数据发送至监测台。它具有8位数据/地址复用接口以及CLE、ALE、WP、R/B、CE等控制信号,硬件接口比较简单,但读写时序相对较复杂,需要依次送入命令、地址、数据等。实际需要输入24位的地址用来寻址,由于该芯片与控制器ATmega128L的接口是8位地址数据复用线,所以需要3个周期才能完成24位地址的输入[5].存储器K9F5608外围电路如图3所示。

图3 K9F5608外围电路

图3 K9F5608外围电路

控制器ATmega128L的PA口完成对Flash数据﹑地址与命令的传输;用控制器的PG口来完成对Flash传输状态的选择,如CLE、ALE、R/B、CE等;用控制器的WE和RD信号来选择FLASH是读还是写,在总线上传输的一般顺序为:

命令->地址->命令/数据。

3 软件设计

系统软件包括监测节点软件和监测台软件两部分。为了确保正常通信,采用问答方式,即控制台依次与每个监测节点建立通信,收到节点发来的数据后,再收取下一个节点的温度数据信息,这样就避免了阻塞的情况,确保数据的可靠性[6].[page]

3.1 监测节点软件

监测节点上电后,首先进行系统初始化,包括控制器各端口、寄存器和通信模块nRF2401的配置等,之后进入接收控制台指令状态。当接收到指令时,立即读取传感器PT100的输出值,经过查表处理得出当前轴温信息,与节点ID打包正数据帧后发送到监测台,并继续进入到接收指令状态。监测节点软件流程如图4所示。

3.2 数据格式

系统了制定了简单的数据帧格式,如表1所示。

图4 监测节点软件流程

图4 监测节点软件流程

表1 监测节点数据帧结构

表1 监测节点数据帧结构

每个帧的帧头都以‘start\'’开始,占用5个字节;然后是占用3个节点的ID,可以认为是节点在网络中的地址;再接下来就是占用6个字节的温度值。当监测台发送指令时,每个监测节点都收到数据,但只有指令中ID与节点ID匹配时才会将该数据返回给监测台,如果不匹配则不做任何处理。

3.3 监测台指令帧结构

监测台与各监测节点通信的时候主要是通过发送指令完成的,指令帧结构如表2所示。

表2 监测台数据帧结构

表2 监测台数据帧结构

每个指令帧也是以“start”开始,占用5个字节;然后是需要提供温度数据的节点ID,占用3个字节;再接下来是指令的有无效,占用1个字节;最后是以“end”的帧尾结束符,占用3个字节。

3.4 数据发送和接收

发送数据。首先将nRF24L01配置为工作在PTX 模式,接着把地址TX_ADDR和数据TX_PLD按照时序由SPI口写入nRF24L01缓存区,置CE为高电平并保持至少10μs,拉低CE后发射数据,并立即进入接收模式等待应答信号。如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从发送堆栈中清除;若未收到应答,则自动重新发射该数据,若重发次数ARC_CNT达到上限,MAX_RT置高,TX_PLD 不会被清除;MAX_RT 或TX_DS置高时,使IRQ变低,通知处理器做相应处理。发射成功后,进入空闲模式。

接收数据。首先将nRF24L01配置为PRX接收模式,接着延迟130μs进入接收状态等待数据的到来。当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ变低,通知处理器读取数据,接收完数据后进入发射状态并回传应答信号,接收成功,CE变低进入空闲模式[5].

4 试验结果与分析

试验采用双层集装箱车,分别对空载和载重的两种不同情况车厢进行了测试。空载车厢自重为25t,载重车厢重为78t.

两种情况的测量结果如图5所示。

 图5 测试结果

图5 测试结果

由于列车运行情况相对复杂,轴温与速度、运行时间、制动、载重和环境温度等情况都有密切关系。从对图5的分析看,具体关系是:速度越快,轴温越高;列车启动阶段,即0~30km之间,随着运行时间的增加轴温越高,当达到一定程度时,运行时间不再轴温;在行驶到43~50km处,列车制动使车轴急剧升高,温度达到71.45℃;在运行稳定状态下,载重78t的车厢明显比载重25t的车厢,温度高6℃左右;另外,环境越高,轴温越高。不难看出,载重越大,轴承运转温度越高,并且上升速度越快。

5 结论

针对目前列车轴温探测存在的不足,借助于现代无线传感器网络技术,设计了系统简洁、布局小巧、灵敏度高、收发信息能力快速的高速列车轴温集中监测系统,摆脱了传统有线的传输方式,可实时监测运行中的列车轴承情况,如超过轴温监测预设定值,就发出报警信号,便于及时采取有效措施,有效地降低事故发生率,避免因事故而产生的巨大经济损失。经过实验得到两种载重情况运行列车的轴温数据,分析了提速列车的轴温变化规律,给改进热轴预报提供了数据基础,对维护铁路运输的正常运行和高速铁路的发展具有重要意义。

关键字:无线传输  列车轴温  监测系统 引用地址:基于单片机的高速列车轴温集中监测系统

上一篇:测量多种生理参数的无线集散医疗监护系统
下一篇:基于AVR单片机的MP3(完整原理图+代码)

推荐阅读最新更新时间:2024-03-16 13:50

无线数据通信的分布式实时水文监测系统
    摘要: 介绍基于无线数据通信的分布式实时水文监测系统,该系统具有实时监测和报警、历史数据本地远程查询、水文趋势预测和分析等功能。同时详尽阐述了无线扩频技术以及无线数据通信的抗干扰措施等。     关键词: 无线数据通信 扩频 抗干扰 硬件/软件设计 长江流域发生洪灾的频率逐年增加,防洪成了治理长江的首要任务。怎样才能更好地掌握河流的水文特征、预测讯期的来临,做好防洪准备,水文实时监测就成了防水治水的重要环节。为了避免人工监测中存在的弊端,开发了一套无线数据通信的分布式远程实时水文实时监测系统。该系统具有实时监测和报警、历史数据本地和远程查询、水文趋势预测和分析等功能。 1 分布式水文监测系统
[网络通信]
电气化铁路电能质量参数监测系统的设计
0 引言 电能作为现代社会中使用最为广泛的能源,其应用程度是衡量一个国家发展水平的重要标志之一。近年来,随着我国电力事业的迅速发展,电力系统的规模日益扩大。与此同时,用户对电能质量的要求也越来越高,使得电能质量问题日益紧迫地摆在了人们的面前,电能质量的好坏直接关系到国民经济的总体效益。铁路作为国民经济的重要基础设施,在我国综合交通运输体系中扮演着重要角色。在加快节约型社会的建设中,铁路肩负着重要责任。一方面,作为消耗能源的重点行业,在节能降耗,提高能源综合应用效率方面大有潜力可挖;另一方面,电气化铁路长期存在功率因数低、谐波含量高和负序等问题,严重影响公用电网的电能质量。从我国铁路发展的历程和趋势来看,电气化铁路在路网中所占
[工业控制]
基于ATmega16的无线温度监测系统设计方案
随着社会的发展和进步,越来越多的场合对温度的要求日臻严格,温度监控系统的应用日趋受到重视。在农业发展领域,农业大棚、冷库、培育温室等众多场合都需要温度测量技术。传统的测温系统都是有线系统,对于一些需要多点测温的场合,使用传统有线测温方式在布设、维护和更新方面存在着很多不便。为了解决这个问题,设计了一种基于单片机和无线收发模块的无线温度监控系统,结合温度传感器可以很方便构建一个多点分布式智能无线温度监控系统。 1 无线温度监控系统构成 系统主要由两部分组成。如图1所示,第一部分是节点温度测量系统,第二部分是温度显示管理终端。节点温度测量系统负责测量温度,并将温度值通过无线通信发送到温度显示管理终端。管理终端接收温度信息并进行显示和
[单片机]
基于ATmega16的无线温度<font color='red'>监测系统</font>设计方案
电池温度智能监测系统的是设计
  蓄电池作为一种供电方便、安全可靠的直流电源,在电力、通信、军事等领域中得到了广泛的应用。温度是蓄电池的一个重要参数,它可以间接地反映电池的性能状况,并且根据此温度参数可以对电池进行智能化管理,以延长电池的寿命。在蓄电池组充放电维护及工作工程中,电池内部产生的热量会引起电池的温度发生变化,尤其是蓄电池过充电、电池内部电解液发生异常变化等原因均可能造成电池温度过高而造成电池损坏。   传统上用人工定时测量的方法,劳动强度大、测量精度差,工作环境恶劣,尤其是不能及时发现异常单体电池容易导致单体电池损坏,甚至导致整组电池故障或损坏;基于总线结构的有线多点温度监测系统,能够实现温度的智能化测量,但存在布线繁多复杂、维护扩展困难等不足。鉴于
[测试测量]
电池温度智能<font color='red'>监测系统</font>的是设计
图形点阵式液晶显示模块在冲击力监测系统
由于点阵式液晶显示模块功耗低、体积小,且可以显示各种字符、汉字以及图形,因而可广泛应用于数字式仪表和各种低功耗监测系统中。笔者利用该模块设计的冲击力监测系统能够实时显示冲击力的大小、速度、峰值及平均值,且操作界面友好。同时在每次测试的开始,都有语音提示;此外,还可根据需要选择资料的存储和打印。本文将重点介绍图形点阵式液晶控制模块与凌阳单片机之间的硬件设计电路和软件编程方法。 1 冲击力监测系统的组成和功能 图1 所示是一个冲击力监测系统的功能框图。本系统由信号采集、信号处理和信号输出三部分组成。其中信号采集部分由力传感器(BK-2Y)和光电编码器(ZKX-6-50BM7.5-G05E)组成。BK-2Y是一款高精度力传感
[测试测量]
图形点阵式液晶显示模块在冲击力<font color='red'>监测系统</font>中
基于网络的电能质量监测系统设计
  0 引 言   随着电力系统运行管理的系统化、智能化、自动化和网络化,对电网的远程实时监控和自动化调试是电力系统发展的必然趋势。近年来,随着人们对电力能源需求的不断增长,电力电子设备应用越来越广泛,大量的非线性负荷、冲击性负荷的投运,使公用电网中产生了大量的谐波干扰以及电压波形畸变、电压波动和三相不平衡等问题,电能质量不断恶化。为实现对电力系统实时的监控和准确的调度,全面掌握电网中电能质量状况并对电力参数进行快速准确的测试就变得十分重要。本文提出了一种基于网络的电能质量监测系统(以下简称“监测系统”),不但能够实现对现场数据的实时采集与分析处理,而且还能够通过网络进行远程监测与控制,有助于解决现场环境恶劣而难以在现场进行精确
[测试测量]
基于网络的电能质量<font color='red'>监测系统</font>设计
浅析自动驾驶汽车盲点监测系统
想必开车的各位都遇到过这样的场景,车辆在路面行驶的过程中,会遇到需要变道、转弯、驶入或驶出停车位的需求,由于车辆本身存在盲区的缘故,仅通过两侧后视镜,很难准确查看后方道路情况,如果盲区内有车辆或行人存在,就会导致剐蹭事故出现,很多的交通事故都是因为车辆的盲区的存在,驾驶员获得了错误的道路信息导致的。 所谓盲区,就是驾驶员在驾驶座位上无法通过后视镜查看到的道路位置,盲区无法直接通过调整后视镜进行消除,在大雨天气、大雾天气、夜间光线昏暗的场景,更是增加了驾驶员的判断难度,导致驾驶员难以通过后视镜准确判断后方车辆的位置,此时如果进行变道、转弯等操作,就会面临更大的危险。 灰色区域为盲区 为了提升驾驶员行车安全,补偿驾驶员在
[嵌入式]
浅析自动驾驶汽车盲点<font color='red'>监测系统</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved