分享STM32 FLASH 擦除(以及防止误擦除程序代码)、写入

发布者:忙中取乐最新更新时间:2015-05-11 来源: 51hei关键字:STM32  FLASH  擦除  写入 手机看文章 扫描二维码
随时随地手机看文章
编译环境:我用的是(Keil)MDK4.7.2   
stm32库版本:我用的是3.5.0
一、本文不对FLASH的基础知识做详细的介绍,不懂得地方请查阅有关资料。
  对STM32 内部FLASH进行编程操作,需要遵循以下流程:
  FLASH解锁
  清除相关标志位
  擦除FLASH(先擦除后写入的原因是为了工业上制作方便,即物理实现方便)
  写入FLASH
  锁定FLASH
实例:
#define FLASH_PAGE_SIZE    ((uint16_t)0x400) //如果一页为1K大小
#define WRITE_START_ADDR   ((uint32_t)0x08008000)//写入的起始地址
#define WRITE_END_ADDR      ((uint32_t)0x0800C000)//结束地址
uint32_t EraseCounter = 0x00, Address = 0x00;//擦除计数,写入地址
uint32_t Data = 0x3210ABCD;//要写入的数据
uint32_t NbrOfPage = 0x00;//记录要擦除的页数
volatile FLASH_Status FLASHStatus = FLASH_COMPLETE;/*FLASH擦除完成标志*/
void main()
{
  /*解锁FLASH*/
 FLASH_Unlock();
  /*计算需要擦除FLASH页的个数 */
 NbrOfPage = (WRITE_END_ADDR - WRITE_START_ADDR) / FLASH_PAGE_SIZE;
  /* 清除所有挂起标志位 */
  FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);        
  /* 擦除FLASH 页*/
 for(EraseCounter = 0; (EraseCounter < NbrOfPage) && (FLASHStatus == FLASH_COMPLETE); EraseCounter++)
    {
      FLASHStatus = FLASH_ErasePage(WRITE_START_ADDR + (FLASH_PAGE_SIZE * EraseCounter));
    }
  /* 写入FLASH  */
 Address = WRITE_START_ADDR;
 while((Address < WRITE_END_ADDR) && (FLASHStatus == FLASH_COMPLETE))
    {
      FLASHStatus = FLASH_ProgramWord(Address, Data);
      Address = Address + 4;
    }
/* 锁定FLASH  */
 FLASH_Lock();
}
二、FLASH 擦除(以及防止误擦除程序代码)
1、擦除函数
FLASH_Status FLASH_ErasePage(u32 Page_Address)只要()里面的数是flash第xx页中对应的任何一个地址!就是擦除xx页全部内容!
 

防止误擦除有用程序代码的方法
方法一:首先要计算程序代码有多少,把FLASH存取地址设置在程序代码以外的地方,这样就不会破坏用户程序。原则上从0x0800 0000 + 0x1000 以后的FLASH空间都可以作为存储使用。如果代码量占了 0x3000, 那么存储在 0x0800 0000+ 0x4000 以后的空间就不会破坏程序了。

方法二:先在程序中定义一个const 类型的常量数组,并指定其存储位置(方便找到写入、读取位置),这样编译器就会分配你指定的空间将常量数组存入FLASH中。当你做擦除。读写操作时,只要在这个常量数组所在的地址范围就好。

  const uint8_t table[10] __at(0x08010000) = {0x55} ;
  MDK3.03A开始就支持关键字 __at() 。
  需要加#include

方法三:在程序中定义一个const 类型的常量数组,无需指定其存储位置。只要定义一个32位的变量存储这个数组的FLASH区地址就行。

  uint32_t address;//STM32的地址是32位的
  const uint8_t imageBuffer[1024] = {0,1,2,3,4,5,6,7};
  address = (uint32_t) imageBuffer;/*用强制类型转换的方式,可以把FLASH中存储的imageBuffer[1024]的地址读到RAM中的变量address 里,方便找到写入、读取位置*/

方法四:利用写保护的方式(没研究明白)[page]

三、FLASH写入
  FLASH的写入地址必须是偶数(FLASH机制决定的FLASH写入的时候只能是偶数地址写入,必须写入半字或字,也就是2个字节或是4字节的内容)
 

 

四、FLASH 读取方法
  *(uint32_t *)0x8000000;//读一个字
  *(uint8_t *)0x8000000;//读一个字节;
  *(uint16_t *)0x8000000;//读半字;  
  举例:
  uint8_t data;
  data = *(uint8_t *)0x8000000;//就是读取FLASH中地址0x8000000处的数据
五、几个有用的子函数
/*
功能:向指定地址写入数据
参数说明:addr 写入的FLASH页的地址
          p    被写入变量的地址(数组中的必须是uint8_t类型,元素个数必须是偶数)
          Byte_Num 被写入变量的字节数(必须是偶数)
*/
  void FLASH_WriteByte(uint32_t addr , uint8_t *p , uint16_t Byte_Num)
  {
          uint32_t HalfWord;
          Byte_Num = Byte_Num/2;
          FLASH_Unlock();
          FLASH_ClearFlag(FLASH_FLAG_BSY | FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);
          FLASH_ErasePage(addr);
          while(Byte_Num --)
          {
                  HalfWord=*(p++);
                  HalfWord|=*(p++)<<8;
                  FLASH_ProgramHalfWord(addr, HalfWord);
                  addr += 2;
          }
          FLASH_Lock();
  }
  例:
  uint8_t data[100];
  FLASH_WriteByte(0x8000000 , data , 100);/*数组data的数据被写入FLASH中*/
/*
功能:从指定地址读取数据
参数说明:addr 从FLASH中读取的地址
          p    读取后要存入变量的地址(数组中的必须是uint8_t类型)
          Byte_Num 要读出的字节数
*/
  void FLASH_ReadByte(uint32_t addr , uint8_t *p , uint16_t Byte_Num)
  {
    while(Byte_Num--)
    {
     *(p++)=*((uint8_t*)addr++);
    }
  }
  例:
  uint8_t data[101];
  FLASH_ReadByte(0x8000001 , data , 101);/*FLASH中的数据被读入数组data中*/
关键字:STM32  FLASH  擦除  写入 引用地址:分享STM32 FLASH 擦除(以及防止误擦除程序代码)、写入

上一篇:STM32 串口 首字节和尾字节少
下一篇:STM32实现低功耗待机总结(电流低至5.7uA)

推荐阅读最新更新时间:2024-03-16 14:01

STM32定时TIM2触发ADC采样,使用DMA保存结果
1.adc.h文件 //ADC-------------------------------------------------------------------------// #ifndef __EVAL_ADC_H #define __EVAL_ADC_H // Includes ------------------------------------------------------------------// #include stm32f10x.h #include eval.h // Exported types --------------------------------
[单片机]
案例分享:KST3420 和 KST3220用ST 的 FlightSenseToF传感器和STM32快速开发原型
案例分享:KST3420 和 KST3220用ST 的 FlightSenseToF传感器和STM32快速开发原型 KST3420 和 KST3220 是 ST 合作伙伴计划授权成员 KS Technologies(又称 KST)公司开发的测距传感器,也是 ST 飞行时间传感器的一个应用研究案例。在过去的四年里,这家产品制造和工程服务公司在多个国家部署了数千个各种用途的测距传感器。例如,有些传感器用于监测主题公园垃圾箱满溢度,从而优化垃圾收集效率;还有一些则用于农场或智慧城市。此外,许多工程师还会对 KST3420 和 KST3220 的45 天原型开发周期给予好评,因为大多数原型开发通常需要几个月甚至几年的时间
[传感器]
案例分享:KST3420 和 KST3220用ST 的 FlightSenseToF传感器和<font color='red'>STM32</font>快速开发原型
STM32是如何进入中断函数的
中断相信很多人都知道是什么意思,不同的任务有不同的优先级,高任务优先级会比低优先级先执行。在嵌入式系统中, 任务的调度和切换都是根据优先级来判断的。 中断可以分为软中断和硬中断。一开始接触到的一般都是软中断,软中断就是中断程序包含在主程序里面,当中断条件满足时,直接跳转到中断函数执行,然后再返回。就相当于判断语句。 刚开始接触STM32的小伙伴可能会发现main.c里面没有中断程序也没用跳转判断语句。例如:定时器中断 #include system.h #include SysTick.h #include led.h #include time.h int main() { u8 i; SysTic
[单片机]
STM32与无源蜂鸣器
使用有源蜂鸣器,只能发出固定的”滴滴“声,当然不能满足于此呀。使用无源蜂鸣器,只要输出不同频率的PWM波,即可发出不同的音符。不同的音符组合起来就是一个曲子了。 1 乐谱简析 1.1 音阶 音阶是音乐必不可少的要素,主要由声音的频率决定。通过给蜂鸣器不同频率的音频脉冲,可以产生不同的音阶,而要产生某频率的音频脉冲,最简单的办法是算出该音频的周期,然后将此周期除以2即为半周期的时间。通过程序控制单片机某引脚半周期为“高”、半周期为“低”,不断交替变换,即可产生该频率的矩形波,接到蜂鸣器上就可发出该频率的声音。若想改变音阶,只需要改变半周期时间即可。下表为各音调音符频率对照表,据此可产生不同音阶的音符。“#”表示半
[单片机]
<font color='red'>STM32</font>与无源蜂鸣器
stm32库函数学习篇---通用定时器(输入捕获功能)
实现功能:PA8随意延时驱动led灯闪烁,并且将PA8用杜邦线连接到PA7口,PA7是通用定时器TIM3的2通道,在TIM3_CH2触发中断程序中取反连接到PD2口的led灯,指示中断程序运行,并且每次进入中断后改变触发捕获的极性。实现两个led灯会交替闪烁。 先有必要了解stm32定时器的输入触发模块,如下图: 需要注意的是,一眼望去一个定时器似乎有8个通道,左边四个,右边四个,但其实左边和右边是共用相同的IO引脚,所以名称标注是一模一样。也就是说,每个通用定时器都只有四个独立通道,当某一通道作为了输入触发功能那就不能再作为输出匹配功能。这一点我们也可以从其他地方找到印证。比如TIM_ITConfig()函数中如下:
[单片机]
<font color='red'>stm32</font>库函数学习篇---通用定时器(输入捕获功能)
STM32驱动LCD12864显示屏
我们做一个电子产品,往往需要实现人机交互的功能。那么人机交互的方式除了输出到上位机通过电脑去显示,显示器也是一个很不错的方式,可用于一些不能使用电脑的场合。LCD12864显示器中的一种,具有价格低廉,操作简单的优点。今天就为大家带来一个STM32驱动12864的例程,使用SPI串行通信,仅仅需要三根数据线就可以完成通信。废话不多说,进入正题。 接线: RS----PB15 RW----PB14 EN----PB13 PSB---GND 1.初始化IO口以及显示屏 void Lcd_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2P
[单片机]
stm32 外扩SRAM使用问题
当把外扩SRAM内存拷贝到片上SRAM内存时使用内存拷贝函数memset()或者原子定义的mymemset()函数,编译器会提示空间不足。 原因是这两个函数一个是只能对片上SRAM操作,一个是只能对外扩SRAM操作,两者没有一个可以同时操作片上SRAM和外扩SRAM,所以编译器会提示内存空间不足。
[单片机]
大容量串行e-Flash的FPGA配置方案
引 言   现场可编程门阵列FPGA(Field Programmable Gate Array)是一种集通用性强、设计灵活、集成度高和编程方便等诸多优点于一身的现场可编程ASIC。自1985年美国的Xilinx公司推出FPGA产品并取得成功以后,FPGA发展迅猛,门数不断提升,达到数百万门的规模;产品种类日益丰富,性能不断完善,在军事、通信、医疗、消费类电子等各领域发挥了巨大的作用。   Xilinx公司的FPGA具有很高的性价比,其集成开发环境ISE和Webpack效率高、界面友好,因此在业界有着广泛的应用。通常对Xilinx公司的FPGA配置采用专用的配置芯片,速度较快,其价格也正逐步降低。笔者为配合某电力测量仪表的开发,对
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved