基于单片机和FPGA的空间材料高温炉控制系统

发布者:zuiquan最新更新时间:2015-06-29 来源: 21ic关键字:单片机  FPGA  温度控制  空间材料 手机看文章 扫描二维码
随时随地手机看文章
随着我国空间技术的发展,越来越多的空间科学实验得以进行。太空中的超真空、微重力、强辐射等条件为科学实验提供了在地面难以实现的环境。空间材料科学实验是一种重要的空间科学实验。不论是国际上还是国内,都投入了大量的人力、物力和财力从事空间材料科学的研究。空间材料科学的研究目的是:揭示材料制备过程中的微观机理和组分、结构与性能之间的内在关联,发现新的科学现象,丰富和发展材料科学理论,指导地面的材料制备和生产工艺。而空间材料科学的研究离不开空间材料高温炉(以下简称高温炉)。我国神舟2号和神舟3号飞船上的空间材料科学实验获得了举世瞩目的研究成果,但随着科学的发展和技术的进步,以往的空问材料高温炉,特别是其控制系统,已经不能

适应我国未来空间站上空间材料科学实验的要求,必须研究新型的控制系统,以适应新的发展需要。提出的基于单片机和FPGA的空间材料高温炉控制系统,将在以下几个方面较原控制系统有较大提高:

1)控制精度从1℃提高到0.5℃;

2)热电偶信号采集数量从6个增加到18个;

3)可控制的加热器从1个增加到2个。

4)具有存储器的EDAC检错纠错功能。

1 控制系统工作原理

控制系统分为3个部分:中央控制单元、温度信号采集与调理单元、加热控制单元。高温炉有两个温区、18个热电偶和一个环境温度传感器。18个热电偶中有两个控温偶,分别对应两个温区的温度控制。控制系统的控制框图如图1所示。

基于单片机和FPGA的空间材料高温炉控制系统

温度信号采集与调理单元将高温炉中的热电偶信号进行放大和采集,中央控制单元将采集到的热电偶信号与温度设定值进行比较,使用PID控制算法计算高温炉加热器控制信号的大小,将该信号输出给加热控制单元,控制高温炉中加热器上的电流。

控制系统的软件由FPGA程序和MCU程序两部分组成。FPGA实现外部接口设备的控制,包括A/D转换器、模拟开关、加热信号控制、RS422通讯、工艺曲线存储器;MCU实现温度控制流程、PID算法、与总线通讯系统的通讯协议。

2 系统硬件构成

根据控制系统工作原理,系统硬件构成框图如图2所示。

基于单片机和FPGA的空间材料高温炉控制系统

系统硬件按功能可划分为中央控制单元、温度信号采集与调理单元和加热控制单元,下面将分模块进行介绍。

2.1 中央控制单元

中央控制单元由FPGA、单片机、EEPROM以及看门狗等元器件组成,如图3所示。

基于单片机和FPGA的空间材料高温炉控制系统

其中MCU选用在航天产品中应用广泛的成熟器件,ATMEL公司生产的80C32单片机作为微处理器。单片机通过总线方式访问和控制FPGA以及EEPROM,并且作为整个系统的控制中心。独立硬件喂狗电路保障程序不会跑飞,确保系统稳定安全工作。外部晶振为有源晶振,此晶振同时为MCU和FPGA提供时钟。

FPCA选用APA600,APA600是ACTEL公司基于Flash工艺的FPGA器件,虽然此系列的FPGA为ACTEL公司的第二代产品,但凭借其宇航级品质,此系列FPGA一直应用在我国航天领域,并发挥重大作用。中央控制单元的功能如下所述。

2.1.1 提供存储器并进行纠错

FPGA为MCU提供4k字节RAM存储器,作为80C32的外部数据存储器。由于空间站上的科学实验时间比飞船上更长,通常为1年以上,其受空间粒子的干扰概率更大。空间粒子对存储器的影响通常是将其打翻,即所谓的单粒子翻转SEU(Single-Event Upsets),因此必须要进行错误检测和校正,即EDAC。

EDAC编码方式采用目前比较常用的汉明编码。这种编码可以进行检错和纠错,可以检测1比特和2比特错误,只能纠正1比特错误,因此适用于单组数据中出现多个错误位概率较低的情况,这恰与SEU经常会打翻星上RAM存储单元1比特信息的情况相符。

2.1.2 工艺曲线和程序存储的读写控制

由于控制程序一旦确定,就不能够再更改,而控制过程的工艺曲线(即温度控制曲线)却由于不同的材料样品,其设定温度、升降温及保温时间以及升降温速率要求不同,所以需要一个存储这些信息的空间,并且可以对这些信息进行实时修改和保存。为了满足这样的需要,中央控制单元中设计了2个EEPROM,分别为程序存储EEPROM和工艺曲线存储EE PROM。

MCU通过FPGA控制EEPROM地址总线,访问程序存储EEPROM存储空间。MCU通过FPGA间接控制工艺曲线EEPROM,根据不同材料样品的工艺要求,访问工艺曲线EEPROM中相应的工艺曲线数据。另外,当MCU接收到总线注入的修改工艺曲线指令时,也可以通过FPGA对工艺曲线进行修改。具体的逻辑控制是由FPGA直接实现的。

2.2 温度信号采集与调理单元

温度信号采集与调理单元包括弱信号采集电路、冷端温度采集电路、多路开关、有源滤波器以及高精度A/D转换电路。

由于模拟开关在开启时会产生毫伏级的信号衰减,因此,对于信号要求精度较高的控温偶,采用先经过放大器然后再进模拟开关的做法,尽可能减小模拟开关对信号的影响。而对于精度要求不是很高的备份和测温偶,则采用先进模拟开关再进放大器的做法,虽然信号的精度有所影响,但节省了处理信号的器件,减小了控制板体积,降低了控制板功耗。温度信号采集与调理单元原理框图如图4所示。

基于单片机和FPGA的空间材料高温炉控制系统

经过调理的热电偶电压信号范围在-10V到+10V之间,这样可以充分利用AD转换芯片的转换精度。FPGA通过信号BYTE、CS以及RC对AD转换芯片进行控制,同时监测AD转换芯片的状态。

2.3 加热控制单元

加热单元采用两组炉丝加热,加热控制方式为PWM,PWM控制方式加热效率高,结合PID算法易于实现高精度控制。炉丝电阻为7.2 Ω,加热电源电压为28 V。炉丝驱动器采用NMOS管,型号为2N7225。2N7225导通电阻小,仅为0.1 Ω,当电流为4 A时,其功耗仅为1.6 W。加热控制单元电路图如图5所示。
 

基于单片机和FPGA的空间材料高温炉控制系统

可以实现三种加热模式,分别为1号温区单独加热;2号温区单独加热;两个温区同时加热。在两个温区同时加热模式下,还可以实现温度梯度可控,例如1号温区温度为600 ℃,同时2号温区温度为700%。这样可以满足多种材料样品对温场的要求。[page]

3 控制系统软件

控制软件由由MCU控制程序和FPGA控制程序构成。

MCU软件结构如图6所示,其主要功能如下。

基于单片机和FPGA的空间材料高温炉控制系统

通讯管理:通过RS422串行总线完成与总线的通讯;数据采集、组织与存储:采集高温炉中的温度数据,并对采集的数据进行组包、存储;数据注入、总线指令处理:对从总线发送的数据注入进行处理,主要内容包括:数据注入的解析,按照注入内容进行实验过程相关设置,包括参数设置和工作模式设置等;加热炉控制管理:根据工作模式及数据注入内容按照既定的实验流程对高温炉的温度按PID算法进行控制;时钟管理:包括系统校时处理与自守时功能;系统管理与维护:包括系统硬件初始化、初始状态的判断与执行、故障状态检测与容错处理和系统维护。

FPGA程序结构如图7所示。FPGA控制程序具有如下功能。

基于单片机和FPGA的空间材料高温炉控制系统

时钟控制功能:实现FPGA内部的时序控制;CPU接口控制功能:实现CPU接口逻辑,包括地址译码、状态寄存器读取外部程序存储区的接口逻辑;串行接口控制功能:实现RS422异步串行接口链路层通讯,将通讯状态报告给CPU软件,发送和接收缓存均为255字节;EEPROM控制功能:实现工艺曲线EEPROM存储器的读写操作;A/D控制功能:实现A/D采集电路中全部模拟量通道的采集控制,并在内部进行数据缓存供CPU读取;SRAM控制功能:外部的4K字节数据RAM和4K字节EDAC校验码存储区均由FPGA内部RAM组成,可实现80C32对外部RAM空间的访问及EDAC纠一检二校验功能,并可将1位错误和2位错误计数报告给CPU软件;炉丝控制功能:可在CPU控制下产生控制2路炉丝驱动电路的211HzPWM信号,脉宽调制范围为1~99%。

4 控制算法

控制系统使用PID控制算法,PID控制器的核心思想是针对控制对象的控制需求,建立描述对象动态特性的数学模型,通过对PID参数的整定,实现在比例、微分、积分3个参数调整的控制策略,达到最佳系统响应和控制效果。完整的PID控制表达式如下:

基于单片机和FPGA的空间材料高温炉控制系统

5 实验结果

利用上述控制系统对用于空间站的空间材料高温加热炉进行地面实验。实验过程中温度的设定曲线为:初始温度为室温;300 min时温度上升至700℃;600 min时温度上升

至880℃;600~2000 min时处于880℃保温状态;2100 min时温度降至500℃;2300 min时温度降至300℃。

基于单片机和FPGA的空间材料高温炉控制系统

实验过程中保温时间为1 400 min,在此时间范围内,最高温度为880.4℃,最低温度为879.5℃,控温精度优于±0.5℃,方差为0.107 4℃。系统控温曲线如图8所示。

6 结论

MCU+FPGA构成的空间材料高温加热炉控制系统,能够很好地满足空间材料生长对温度环境的要求,具有较高的温度控制精度,同时其热电偶信号采集电路、炉丝加热电路和通讯电路能够实现多路冗余设计,具有较高的可靠性,能够满足空间科学实验的要求,因此,它为我国空间站上空间材料科学实验高温加热炉控制系统的研制铺平了道路。

关键字:单片机  FPGA  温度控制  空间材料 引用地址:基于单片机和FPGA的空间材料高温炉控制系统

上一篇:基于单片机的低压马达保护装置
下一篇:使用IDE降低您的MCU功耗

推荐阅读最新更新时间:2024-03-16 14:23

向51单片机说再见
最近在访问论坛时看到好多人在讨论51单片机,有人说51单片机应该学习,它是基础;也有人说51单片机是过时的产品,现在产品应用已经不再选用了,也就失去了学习的必要性。从最初的51单片机学起,工作多年后现在基本应用32位MCU做项目,笔者觉得是时候向51单片机说再见了。 51单片机的辉煌过去 51单片机指MCS-51系列单片机,CICS指令集。由Intel公司开发,其结构增加了如乘(MUL)、除(DIV)、减(SUBB)、比较(CMP)、16位数据指针、布尔代数运算等指令,以及串行通信能力和5个中断源,内有128个RAM单元及4K的ROM。其代表型号是ATMEL公司的AT89系列,它广泛应用于工业测控系统之中。目前国内的51单片机市场
[单片机]
基于FPGA的IEEE-1394b双向数据传输系统设计
随着IEEE Std 1394-1995技术的高速发展,IEEE 1394已经成为众多电子设备基本的外部接口。然而,要进一步扩展它的适用领域,就必须克服其接口被限制工作在较短距离以及不适用于较高数据传输率的缺陷。IEEE Std 1394b-2002作为其修订版本支持800 Mb·s-1传输速率,且中继距离长达100m。它将原来的DS(Data-Strobe)编码方式改进为8B/10B编码方式,这对于1394性能的改进起着决定性作用。同时,1394b是向下兼容的,也就是说同一个电路既可以选择使用DS编码也可以选择使用8B/10B编码。   现在符合1394b标准的链路层和物理层控制芯片都遵循1394 OHCI(开放式主机控制接
[嵌入式]
基于<font color='red'>FPGA</font>的IEEE-1394b双向数据传输系统设计
PIC单片机人机接口4×4行列式键盘的工作原理
  (1)单片机系统键盘原理   行列式键盘的接法比独立式键盘的接法复杂,编程实现上也会比较复杂。但是,在占用相同的I/O端口的情况下,行列式键盘的接法会比独立式接法允许的按键数量多,其原理图如图1所示。   图1 4×4行列式键盘的原理图   实际的工程中,可能会使用PIC16C5X这种通用的可编程的键盘、显示接口器件,使用PIC16C5X单片器件就能够完成键盘输入和显示控制两种功能。   行列式键盘的工作方式是先用列线发送扫描字,然后读取行线的状态,查看是否有按键按下。键盘部分提供一种扫描的工作方式,可以和具有64个按键的矩阵键盘相连接,能对键盘不断扫描、自动消抖、自动识别按下的键,并给出编码,能对双键或n
[嵌入式]
单片机与PLC之间的区别联系
单片机和PLC之比较 要搞清楚单片机与PLC的异同,首先得明确什幺是单片机,什幺是PLC。对此,我们简要回顾一下计算机的发展历程也许有帮助,按计算机专家的原始定义,计算机系统由五大部分--即控制单元(CU)、算术运算单元(ALU)、存储器(Memory)、输入设备(Input)、输出设备(Output)组成。早期计算机(晶体管的或集成电路的,不包括电子管的)的CU或ALU由一块甚至多块电路板组成,CU和ALU是分离的,随着集成度的提高,CU和ALU合在一块就组成了中央处理单元(CPU),接着将CPU集成到单块集成电路中就产生MPU或MCU,出现了如Intel4004、8008、8080,8085、8086、8088、Z80等MP
[单片机]
51单片机Keil C 延时程序
应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间很短,一般都是几十到几百微妙(us)。有时候还需要很高的精度,比如用单片机驱动DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。这种情况下,用计时器往往有点小题大做。而在极端的情况下,计时器甚至已经全部派上了别的用途。这时就需要我们另想别的办法了。 以前用汇编语言写单片机程序的时候,这个问题还是相对容易解决的。比如用的是12MHz晶振的51,打算延时20us,只要用下面的代码,就可以满足一般的需要: mov r0, #09h loop: djnz r0, loop 51单片机的指令周期是晶振频率的1/12,也就是1us一个周期。mov r0,
[单片机]
单片机为核心处理器 无线解说器
无线讲解器通常用于工厂、博物馆、景区等室外空旷场所供参观介绍用,通过事先在场所安放无线发射模块,并控制发射模块的工作范围。听众到达景点后,手上的讲解器将自动接收各个地点的无线编码信号,经解码后即可将存储在SD卡中的语音播放,以便清晰地全程收听全部介绍内容。 1 系统总体构成 系统主要器件包括TFT触摸屏、STM32F103RCT6微控制器、SD卡、语音解码芯片VS1003、扬声器。STM32F103RCT6微控制器为系统终端的控制核心,通过它与手持式设备之间进行无线串口通讯,读取SD卡中的音频文件,控制VS1003解码读取的数据,实现声音的播放与控制,该系统主体结构如图1所示。 图1 系统设计框图 2 硬件电路控制
[单片机]
以<font color='red'>单片机</font>为核心处理器 无线解说器
51单片机系列知识13--1206LCD(1)
在单片机的人机交流界面中,一般的输出方式有以下几种:发光管、LED数码管、LED点阵、液晶显示器。本主题重点讨论液晶显示器。 1.在单片机系统中应用晶液显示器作为输出器件有以下几个优点: (1)显示质量高 由于液晶显示器每一个点在收到信号后就一直保持那种色彩和亮度,恒定发光,而不像阴极射线管显示器(CRT)那样需要不断刷新新亮点。因此,液晶显示器画质高且不会闪烁。 (2)数字式接口 液晶显示器都是数字式的,和单片机系统的接口更加简单可靠,操作更加方便。 (3)功耗低 相对而言,液晶显示器的功耗主要消耗在其内部的电极和驱动IC上,因而耗电量比其它显示器要少得多。 (4)体积小、重量轻 液晶显示器通
[单片机]
51<font color='red'>单片机</font>系列知识13--1206LCD(1)
单片机设计微型电子琴
  单片机因其体积小、功能强、价格低廉而得到广泛应用。本文介绍用AT89C51单片机设计微型电子琴的方法,仅需AT89C51最小系统,扩展一组小键盘(这里以4×4键盘为例,可按需要扩展),再加一片LM386做音频小功放,输出到扬声器。电源可由三节5号电池提供。 1设计原理   乐音实际上是有固定周期的信号。我们可以用AT89C51的一个定时器(如T1)控制,在P3.4脚上输出方波周期信号,产生乐音。根据不同的按键,调节T1的溢出时间,可输出不同频率的乐音,这样就做出了一台微型电子琴。   每个乐音的音高(频率)是固定的,表1列出了一个8度以及其上下共16个音的音名、频率及定时器T1初值对照(设晶体频率为6MHz),供参考。 2硬
[单片机]
用<font color='red'>单片机</font>设计微型电子琴
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved