STM32时钟理解

发布者:LovingLife2023最新更新时间:2015-09-10 来源: eefocus关键字:STM32  时钟理解 手机看文章 扫描二维码
随时随地手机看文章
一、硬件上的连接问题

[转载]STM32时钟理解
 

如果使用内部RC振荡器而不使用外部晶振,请按照如下方法处理:

1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
2)对于少于100脚的产品,有2种接法:
   i)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。
   ii)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面i)节省2个外部电阻。

[转载]STM32时钟理解
 

STM32时钟系统结构图

    时钟是STM32单片机的脉搏,是单片机的驱动源。使用任何一个外设都必须打开相应的时钟。这样的好处就是,如果不使用一个外设的时候,就把它的时钟关掉,从而可以降低系统的功耗,达到节能,实现低功耗的效果。

 

STM32单片机的时钟可以由以下3个时钟源提供:

1、HSI:高速内部时钟信号STM32单片机内带的时钟 (8M频率), 精度较差

2、HSE:高速外部时钟信号,精度高。

       来源:i. HSE外部晶体/陶瓷谐振器(晶振);

            ii.HSE用户外部时钟         

3、LSE:低速外部晶体 32.768kHz 主要提供一个精确的时钟源 一般作为RTC时钟使用

    STM32单片机的将时钟信号(例如HSE)经过分频或倍频(PLL)后,得到系统时钟,系统时钟经过分频,产生外设所使用的时钟。

    上图为STM32整个时钟架构。

    为了便于更好了解STM32单片机的时钟,下面以HSE时钟的使用为例。

    设置时钟流程:

    1、将RCC寄存器重新设置为默认值      RCC_DeInit

    2、打开外部高速时钟晶振HSE          RCC_HSEConfig(RCC_HSE_ON);

    3、等待外部高速时钟晶振工作         HSEStartUpStatus = RCC_WaitForHSEStartUp();

    4、设置AHB时钟                     RCC_HCLKConfig;

    5、设置高速AHB时钟                 RCC_PCLK2Config;

    6、设置低速速AHB时钟               RCC_PCLK1Config

    7、设置PLL                        RCC_PLLConfig

    8、打开PLL                        RCC_PLLCmd(ENABLE);

    9、等待PLL工作            while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)  

    10、设置系统时钟          RCC_SYSCLKConfig

    11、判断是否PLL是系统时钟      while(RCC_GetSYSCLKSource() != 0x08)

    12、打开要使用的外设时钟       RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

 

    在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

    HSI是高速内部时钟,RC振荡器,频率为8MHz。

    HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

    LSI是低速内部时钟,RC振荡器,频率为40kHz。

    LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

    PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

    其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。

    STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。

   另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。[page]

   系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:

   1)送给AHB总线、内核、内存和DMA使用的HCLK时钟。

   2)通过8分频后送给Cortex的系统定时器时钟。

   3)直接送给Cortex的空闲运行时钟FCLK。

   4)送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频

      率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定

      时器2、3、4使用。

   5)送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频

      率72MHz),另一路送给定时器(Timer1)倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使

      用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为

      2、4、6、8分频。

    在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。

    需要注意的是定时器的倍频器,(定时器时钟之前有一个乘法器,它的操作不是由程序控制的,是由硬件根据前一级的APB预分频器的输出自动选择)当APB的分频为1时(这个乘法器无作用),它的倍频值为1,否则它的倍频值就为2(即将APB预分频器输出的频率乘2,这样可以保证定时器可以得到最高的72MHz时钟脉冲)。

    连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。

    连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。

    在单片机系统中,CPU和总线以及外设的时钟设置是非常重要的,因为没有时钟就没有时序,组合电路需要好好理解清楚。

    准备知识:
    片上总线标准种类繁多,而由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。二者分别适用于高速与相对低速设备的连接。
由于时钟是一个由内而外的东西,具体设置要从寄存器开始。

RCC 寄存器结构,RCC_TypeDeff,在文件“stm 32f10x_map.h”中定义如下: 
typedef struct
{
vu32 CR;
vu32 CFGR;
vu32 CIR;
vu32 APB2RSTR;
vu32 APB1RSTR;
vu32 AHBENR;
vu32 APB2ENR;
vu32 APB1ENR;
vu32 BDCR;
vu32 CSR;
} RCC_TypeDef;

    这些寄存器的具体定义和使用方式参见芯片手册,因为C语言的开发可以不和他们直接打交道,当然如果能够加以理解和记忆,无疑是百利而无一害。

    如果外接晶振为8Mhz,最高工作频率为72Mhz,显然需要用PLL倍频9倍,这些设置都需要在初始化阶段完成。为了方便说明,以例程的RCC设置函数,并用中文注释的形式加以说明:


static void RCC_Config(void)
{

   
    RCC_DeInit();

   
    RCC_HSEConfig(RCC_HSE_ON);

   
    HSEStartUpStatus = RCC_WaitForHSEStartUp();

    if (HSEStartUpStatus == SUCCESS)
    {
       
        FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

       
        FLASH_SetLatency(FLASH_Latency_2);

       
        RCC_HCLKConfig(RCC_SYSCLK_Div1);

       
        RCC_PCLK2Config(RCC_HCLK_Div1);

       
        RCC_PCLK1Config(RCC_HCLK_Div2);

       
        RCC_ADCCLKConfig(RCC_PCLK2_Div6);

       
        //上面这句例程中缺失了,但却很关键
        
        RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

       
        RCC_PLLCmd(ENABLE);


       
        while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
        {}

       
        RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

       
        while (RCC_GetSYSCLKSource() != 0x08)
        {}
    }
    
    //使能外围接口总线时钟,注意各外设的隶属情况,不同芯片的分配不同,到时候查手册就可以
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
                           RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG |
                           RCC_APB2Periph_AFIO, ENABLE);
}
    由上述程序可以看出系统时钟的设定是比较复杂的,外设越多,需要考虑的因素就越多。同时这种设定也是有规律可循的,设定参数也是有顺序规范的,这是应用中应当注意的,例如PLL的设定需要在使能之前,一旦PLL使能后参数不可更改。

    经过此番设置后,对于外置8Mhz晶振的情况下,系统时钟为72Mhz,高速总线和低速总线2都为72Mhz,低速总线1为36Mhz,ADC时钟为12Mhz,USB时钟经过1.5分频设置就可以实现48Mhz的数据传输。

    一般性的时钟设置需要先考虑系统时钟的来源,是内部RC还是外部晶振还是外部的振荡器,是否需要PLL。然后考虑内部总线和外部总线,最后考虑外设的时钟信号。遵从先倍频作为CPU时钟,然后在由内向外分频,下级迁就上级的原则。 

关键字:STM32  时钟理解 引用地址:STM32时钟理解

上一篇:STM32学习笔记——SystemInit()函数
下一篇:STM32系统时基定时器

推荐阅读最新更新时间:2024-03-16 14:31

C语言宏定义的使用原理
使用STM32开发的朋友不知道是否有发现过这样的一些宏定义? 如下: #if defined (__CC_ARM) #pragma anon_unions #endif 看到上面的语句一开始确实搞不懂为什么要写这些东西,通过上网去查询,才搞明白这其中的使用原理。 上面的代码段我们可以看到两部分的内容: 1) __CC_ARM 2) #pragma anon_unions 这两个都有啥用呢? 待我一一道来! 1、__CC_ARM 是 ARM 编译中的宏选项 __CC_ARM 是一个编译器的选项,在ARM开发中根据开发环境的不同,有好几个可选的宏选项。
[单片机]
STM32自学手册之GPIO
GPIO是STM32最常用的设备之一。STM32可以提供最多达80个双向IO口(视型号而定),他们分别分布在A-E五个端口中。每个端口有16个IO,每个IO口都可以承受最大为5V压降。通过GPIO的配置寄存器,我们可以把GPIO口配置成我们想要的工作模式,一共有如下8种模式: ● 浮空输入 ● 带上拉电阻的输入 ● 带下拉电阻的输入 ● 模拟输入 ● 开漏输出 ● 推挽输出 ● 复用推挽输出 ● 复用开漏输出 STM32的GPIO除了上述8种工作模式之外,还可以进行两种映射:外部中断映射和第二功能映射(也叫重映射)。当某个IO口映射为外部中断通道后,该IO口就成为一个外部中断源,我们可以在这个I
[单片机]
<font color='red'>STM32</font>自学手册之GPIO
Keil(MDK-ARM-STM32)系列教程(六)Configuration(Ⅱ)
Ⅰ、写在前面 本文接着上一篇文章“Configuration(Ⅰ)”进行讲述Configuration后面三项Shortcut Keys快捷键、Text Completion代码完形、Other其他的内容。 Shortcut Keys快捷键:Keil软件里面所有快捷键都可以在Configuration配置中查看的到,也可以自定义快捷键。 Text Completion代码完形:包含代码自动完成、代码模板、语法错误检测等。 Other其他:这个选项不常用,包含UVSOCK (TCP/IP)设置、打开软件设置等。 阅读本文之前建议先阅读上一篇文章: Keil(MDK-ARM-STM32)系列教程(五)_Configu
[单片机]
Keil(MDK-ARM-STM32)系列教程(六)Configuration(Ⅱ)
STM32物联网之TFTP文件传输
感言:专注物联网应用开发,分享物联网技术经验。 软件平台:IAR6.5 TCP/IP协议栈:LWIP1.4.1 硬件平台:STM32F103C8T6有线通信板 1、TCP/IP协议栈LWIP 1.1、LWIP认识 LWIP是瑞典计算机科学院(SICS)的Adam Dunkels 开发的一个小型开源的TCP/IP协议栈,是Light Weight (轻型)IP协议,有无操作系统的支持都可以运行。LWIP提供三种API,分别是RAW API、LWIP API 、BSD API。其中RAW API把协议栈和应用程序放到一个进程里边,该接口基于函数回调技术来实现的,适合于无操作系统的场合运行,如单片机。本
[单片机]
STM32 Cotex-M3处理器系列编程】串口调试
#include stm32f10x.h //#include stm32f10x_lib.h void Delay(unsigned int x); void UART_Init(void); int main(void) { while (1) { Delay(300000); UART_Init(); //初始化串口 USART_SendData(USART1,0x1A); //从串口发送数据到计算机 while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//RESET是0,等待发送完毕
[单片机]
STM32_固件库操作LED灯
流水灯,几乎是每种开发板第一个接触的实验,简单而又不可少。 今天,小编简要说明一下如何使用固件库操作LED灯。 硬件连接: 软件设计: void LED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; // 1,使能GPIO对应引脚时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG ,ENABLE); // 2,定义GPIO引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出 GPIO_InitStructure.GP
[单片机]
STM32_固件库操作LED灯
STM32串口通信详解
一.数据通信方式 1.串行与并行通信 按数据传送的方式,通讯可分为串行通讯与并行通讯。 串行通讯:是指设备之间通过一根数据信号线,地线以及控制信号线,按数据位形式一位一位地传输数据的通讯方式,同一时刻只能传输一位(bit)数据。 并行通讯:是指使用 8、16、32 及 64 根或更多的数据线(有多少信号为就需要多少信号位)进行传输的通讯方式,可以同一时刻传输多个数据位的数据。 串行通讯与并行通讯的特性对比: 并行可以同时发送多位数据所以速度比串行的速度要快很多,但并行要的数据线也更多相对成本会更高,而且并行传输对同步要求较高,且随着通讯速率的提高,信号干扰的问题会显著影响通讯性能。 2.全双工、半双工及单工通讯 单工通信:
[单片机]
<font color='red'>STM32</font>串口通信详解
按键开关机电路图 按键开关机电路设计方案
最近做个基于STM32脑波检测的项目,甲方爸爸要求使用按键进行开关机。在网上查了一些资料,找到了很多案例分享,在此进行总结。 主要分为以下两部分: 单片机控制按键开关机电路 独立按键开关机电路 1、单片机控制按键开关机电路 1.1、简约版 图中Ctr和Key接单片机管脚,作用如下: Ctr作为开关控制用 Key作为按键检测用 操作流程: 开机:按下按键,Q1导通,单片机上电,控制Ctr为低电平,保持Q1导通。 关机:再按下按键,单片机控制Ctr为高电平,此时松开按键Q1截至,单片机停电。 如图: 简约版 优缺点分析: 优点:电路简单,元器件比较少。 缺点:在停机状态下单片机的IO口依旧带电,正常使用没问
[单片机]
按键开关机电路图 按键开关机电路设计方案
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved