堆栈入门——堆和栈区别

发布者:心有归属最新更新时间:2015-09-28 来源: eefocus关键字:堆栈入门 手机看文章 扫描二维码
随时随地手机看文章
在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝赐教,这对于大家学习会有很大帮助。
       首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。
       堆和栈都是一种数据项按序排列的数据结构。
       我们先从大家比较熟悉的栈说起吧,它是一种具有后进先出性质的数据结构,也就是说后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。而堆就不同了,堆是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于堆的这个特性,常用来实现优先队列,堆的存取是随意,这就如同我们在图书馆的书架上取书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。
       然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。
       下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分别存储不同的信息,如下图所示:
 C语言程序内存分配中的堆和栈

       内存中的栈区处于相对较高的地址以地址的增长方向为上的话,栈地址是向下增长的,栈中分配局部变量空间,堆区是向上增长的用于分配程序员申请的内存空间。另外还有静态区是分配静态变量,全局变量空间的;只读区是分配常量和程序代码空间的;以及其他一些分区。

来看一个网上很流行的经典例子:
main.cpp
  int a = 0; 全局初始化区
  char *p1; 全局未初始化区
  main()
  {
  int b; 栈
  char s[] = "abc"; 栈
  char *p2; 栈
  char *p3 = "123456"; 123456在常量区,p3在栈上。
  static int c =0; 全局(静态)初始化区
  p1 = (char *)malloc(10);  
  p2 = (char *)malloc(20);  
  }
  
       不知道你是否有点明白了,堆和栈的第一个区别就是申请方式不同:栈(英文名称是stack)是系统自动分配空间的,例如我们定义一个 char a;系统会自动在栈上为其开辟空间。而堆(英文名称是heap)则是程序员根据需要自己申请的空间,例如malloc(10);开辟十个字节的空间。由于栈上的空间是自动分配自动回收的,所以栈上的数据的生存周期只是在函数的运行过程中,运行后就释放掉,不可以再访问。而堆上的数据只要程序员不释放空间,就一直可以访问到,不过缺点是一旦忘记释放会造成内存泄露。还有其他的一些区别我认为网上的朋友总结的不错这里转述一下:

1.申请后系统的响应
  栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
  堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
       也就是说堆会在申请后还要做一些后续的工作这就会引出申请效率的问题

2.申请效率的比较
  栈由系统自动分配,速度较快。但程序员是无法控制的。
  堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.

3.申请大小的限制
  栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
  堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
  
4.堆和栈中的存储内容
  栈:在函数调用时,第一个进栈的是主函数中函数调用后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。

       返回地址

  函数的参数

  局部变量

  当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。


  堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

5.存取效率的比较 
  char s1[] = "aaaaaaaaaaaaaaa";
  char *s2 = "bbbbbbbbbbbbbbbbb";
  aaaaaaaaaaa是在运行时刻赋值的;
  而bbbbbbbbbbb是在编译时就确定的;
  但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
  比如:
  #i nclude
  void main()
  {
  char a = 1;
  char c[] = "1234567890";
  char *p ="1234567890";
  a = c[1];
  a = p[1];
  return;
  }
  对应的汇编代码
  10: a = c[1];
  00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
  0040106A 88 4D FC mov byte ptr [ebp-4],cl
  11: a = p[1];
  0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
  00401070 8A 42 01 mov al,byte ptr [edx+1]
  00401073 88 45 FC mov byte ptr [ebp-4],al

       堆和栈的区别可以引用一位前辈的比喻来看出:
  
       使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
  
       使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。比喻很形象,说的很通俗易懂,不知道你是否有点收获。

关键字:堆栈入门 引用地址:堆栈入门——堆和栈区别

上一篇:keil中printf
下一篇:keil常见错误和解决方法

推荐阅读最新更新时间:2024-03-16 14:33

3D芯片堆栈技术向数据中心抛媚眼
运算密度跟不上因特网流量增加速度,数据中心分析之数据量的成长速度前所未有;要解决这个问题,需要更大的内存带宽,而这是3D芯片堆栈技术展现其承诺的一个领域。下面就随半导体小编一起来了解一下相关内容吧。 被甲骨文(Oracle)取消的一个微处理器开发项目,在传统制程微缩速度减缓的同时,让人窥见未来高阶芯片设计的一隅;该Sparc CPU设计提案的目标是采用仍在开发的芯片堆栈技术,取得越来越难透过半导体制程技术取得的优势。 在上述概念背后的研究人员,是甲骨文在今年初被裁撤的硬件部门之一员;但他的点子化为一家顾问公司而存活了下来,并且已经开始与美国硅谷的半导体业者进行合作。 甲骨文前任资深首席工程师、创办了一家三人新创公司ProPri
[半导体设计/制造]
基于双频技术建模测量高k电介质层中频率的相关性
C-V测量是测定MOS器件特性的主要方法,它广泛地应用于半导体材料的研究中。C-V测量时常常在SiO2中观察到有害的频率离散。用于校正测量误差数据的一些分析公式和模型已得到充分研究。着重于消除串联电阻、氧化物漏电、氧化物与半导体间不希望有的损耗介电薄层、多晶硅耗尽层和表面粗糙度等等的影响。减少纳米级MOS器件中栅极漏电的迫切需求刺激了用高k电介质替代SiON的努力。但是,将高k电介质引入生产线将再次引起C-V测量曲线积累区处的频率离散。到目前为止,频率离散的准确来源仍有待讨论。 本文研究了高k电介质堆层中频率离散的原因。特别提出了电介质介电常数(k值)的频率离散。为了确证单独k值相关影响,对高k电介质和硅衬底间损耗界面层的影响
[测试测量]
基于双频技术建模测量高k电介质<font color='red'>堆</font>层中频率的相关性
高压硅该如何检测?
单独一个硅二极管耐压有限,许多个串接起来做在一个器件中,作为高压整流元件,就叫高压硅堆,在高压电路中相当于一个单独的二极管。  高压硅堆内部是由多支高压整流二极管串联组成,检测时,可用万用表的R×10K档测量其正,反向电阻值。正常的高压硅堆,其正向电阻值大于200KΩ,反向电阻值为无穷大。若测得起正,反向均有一定电阻值,则说明该高压硅堆已软击穿损坏。 另一种方法是:高压硅堆有整流功能,将万用表的量程开关拨至直流电压档250V或500V档后,串联高压硅堆并接在220V交流电源上。由于高压硅堆的整流作用,万用表指针的偏转反映了半波整流后的电流平均值。因而高压硅堆与万用表就构成了一只半波整流式的交流电压表。 当被测高压硅堆按照正向
[测试测量]
51单片机堆栈的分析
1.51单片机的堆栈属于向上增长型,堆栈开在内部ram,堆栈指针八位,系统启动时初始化值为07 2.进出栈指令 push acc pop acc 00-7fh是内部ram 80h-0ffh是sfr特殊功能寄存器 不能对80h到0ffh的高端ran进行堆栈操作 不能对r0-r7寄存器组进行堆栈操作 寄存器A进行堆栈操作时只能用直接寻址操作形式 acc 3.子程序与中断 调用子程序与调用中断服务程序,入栈的都是 pcL---pcH,但是调用子程序时入栈的是取指令后尚未执行的PC值,而中断是执行完后的PC值
[单片机]
嵌入式软件中基于的错误追踪机制设计
引言     嵌入式软件开发往往缺乏必要的调试工具和调试手段,同时需要有较高的容错处理能力,程序正常运行过程中尽量不因为出现异常而导致系统停止。一旦发生错误或异常,开发人员需要尽量多的错误环境信息来查找问题的原因。从程序编写的角度来讲,一般嵌入式软件都采用C语言开发。C语言本身的特点决定了无法利用语言本身的功能实现对异常的跟踪与处理,只能通过良好的编程模型与习惯,以及后期的大量测试,来发现和解决异常。因此,如何进一步提升程序开发中的可调试性,对于运行中的异常如何保存现场,从而方便进行异常追踪等,是开发者需要考虑的重要问题。本文针对嵌入式C语言开发的特点,提出一种基于堆栈模式的异常追踪编程模型,能够实现有效的异常现场保存与恢复,并
[嵌入式]
ST堆栈寄存器原理图
ST堆栈寄存器的作用,是出现中断或子程序调用时,保存断点处PC的值,以便中断或子程序结束时,能继续执行原程序。其原理图见2-10。 图2-10 ST堆栈寄存器原理图 图中,信号STEN的作用是将数据总线DBUS上数据存入堆栈寄存器ST中。
[模拟电子]
ST<font color='red'>堆栈</font>寄存器原理图
在ARM开发环境下C语言的设置堆栈指针和清理BSS段的作用概述
以前稍微写过操作系统上的C程序,感受不出来:BSS段,堆栈的意义。到了在单片机上写程序也没有考虑这些问题。但是到了ARM上环境似乎没有那么简单了,C的环境要自己来创建,不然就不能用。这也深刻的感受到了C语言中原来难以理解的概念。 裸机建立C语言环境-设置堆栈指针 这个是使用C语言的首要条件,不过这个就是指定一个sp指针就可以了,很简单的。ldr sp, =4096。 裸机建立C语言环境-清理BSS段 如果C语言中用到的全局变量或者静态变量,这个编译的时候是把它们放到了BSS段,这个段在内存中。怎么建成的?手动写一个链接脚本,添加__bss_start __bss_end变量来表示BSS段的开始和结束。如下: SECTION
[单片机]
在ARM开发环境下C语言的设置<font color='red'>堆栈</font>指针和清理BSS段的作用概述
STM32堆栈溢出的问题
在程序中出现栈溢出的情况,就是分配局部变量时因为内存溢出而重启,局部变量分配在栈中,栈区域满了导致溢出,需要修改startup_stm32f10x_hd.s中,或startup_stm32f10x_ld.s,startup_stm32f10x_md.s,具体文件按要看CPU是否是High-density flah,修改Stace_Size来解决。
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved