STM32普通型芯片的CAN有14组过滤器组,互联型有28组过滤器组.
一般我们用的都是普通型的,所以在本文中可以说STM32有14组过滤器组.
根据配置,每1组过滤器组可以有1个,2个或4个过滤器.
这些过滤器相当于关卡,每当收到一条报文时,CAN要先将收到的报文
从这些过滤器上"过"一下,能通过的报文是有效报文,收进FIFO中,
不能通过的是无效报文(不是发给"我"的报文),直接丢弃.
所有的过滤器是并联的,即,一个报文只要通过了一个过滤器,就是算是有效的.
每组过滤器组有两种工作模式: 标识符列表模式,标识符屏蔽位模式.
在标识符列表模式下,收到报文的标识符必须与过滤器的值完全相等,才能通过.
在标识符屏蔽位模式下,可以指定标识符的哪些位为何值时,就算通过.这其实就是限定了处于某一范围的标识符能够通过.
在一组过滤器中,整组的过滤器都使用同一种工作模式.
另外,每组过滤器中的过滤器宽度是可变的,可以是32位或16位.
由工作模式和宽度,一个过滤器组可以变成以下几中形式之一:
(1) 1个32位的屏蔽位模式的过滤器.
(2) 2个32位的列表模式的过滤器.
(3) 2个16位的屏蔽位模式的过滤器.
(4) 4个16位的列表模式的过滤器.
所有的过滤器是并联的,即,一个报文只要通过了一个过滤器,就是算是有效的.
每组过滤器组有两个32位的寄存器用于存储过滤用的"标准值",分别是FxR1,FxR2.
在32位的屏蔽位模式下:
有1个过滤器,
FxR2用于指定需要关心哪些位,FxR1用于指定这些位的标准值.
在32位的列表模式下:
有两个过滤器.
FxR1指定过滤器0的标准值,收到报文的标识符只有跟FxR1完全相同时,才算通过.
FxR2指定过滤器1的标准值.
在16位的屏蔽位模式下:
有2个过滤器.
FxR1配置过滤器0,其中,[31-16]位指定要关心的位,[15-0]位指定这些位的标准值.
FxR2配置过滤器1,其中,[31-16]位指定要关心的位,[15-0]位指定这些位的标准值.
在16位的列表模式下:
有4个过滤器.
FxR1的[15-0]位配置过滤器0,FxR1的[31-16]位配置过滤器1.
FxR2的[15-0]位配置过滤器2,FxR2的[31-16]位配置过滤器3.
STM32的CAN有两个FIFO,分别是FIFO0,FIFO1.为了便于区分,下面FIFO0写作FIFO_0,FIFO1写作FIFO_1.
每组过滤器组必须关联且只能关联一个FIFO.复位默认都关联到FIFO_0.
所谓"关联",是指假如收到的报文从某个过滤器通过了,那么该报文会被存到该过滤器相连的FIFO.
从另一方面来说,每个FIFO都关联了一串的过滤器组,两个FIFO刚好瓜分了所有的过滤器组.
每当收到一个报文,CAN就将这个报文先与FIFO_0关联的过滤器比较,如果被匹配,就将此报文放入FIFO_0中.
如果不匹配,再将报文与FIFO_1关联的过滤器比较,如果被匹配,些报文就放入FIFO_1中.
如果还是不匹配,此报文就被丢弃.
每个FIFO的所有过滤器都是并联的,只要通过了其中任何一个过滤器,该报文就有效.
如果一个报文既符合FIFO_0的规定,又符合FIFO_1的规定,显然,根据操作顺序,它只会放到FIFO_0中.
每个FIFO中只有激活了的过滤器才起作用,换句话说,如果一个FIFO有20个过滤器,但是只激话了5个,
那么比较报文时,只拿这5个过滤器作比较.
一般要用到某个过滤器时,在初始化阶段就直接将它激活.
需要注意的是,每个FIFO必须至少激活一个过滤器,它才有可能收到报文.如果一个过滤器都没有激活,
那么是所有报文都报废的.
一般的,如果不想用复杂的过滤功能,FIFO可以只激活一组过滤器组,且将它设置成32位的屏蔽位模式,
两个标准值寄存器(FxR1,FxR2)都设置成0.这样所有报文均能通过.
STM32 CAN中,另一个较难理解的就是过滤器编号.
过滤器编号用于加速CPU对收到报文的处理.
收到一个有效报文时, CAN会将收到的报文, 以及它所通过的过滤器编号, 一起存入接收邮箱中,
CPU在处理时,可以根据过滤器编号,快速的知道该报文的用途,从而作出处理.
不用过滤器编号其实也是可以的, 这时候CPU就要分析所收报文的标识符, 从而知道报文的用途.
由于标识符所含的信息较多,处理起来就慢一点了.
STM32使用以下规则对过滤器编号:
(1) FIFO_0和FIFO_1的过滤器分别独囗立编号,均从0开始按顺序编号.
(2) 所有关联同一个FIFO的过滤器,不管有没有被激活,均统一进行编号.
(3) 编号从0开始,按过滤器组的编号从小到大,按顺序排列.
(4) 在同一过滤器组内,按寄存器从小到大编号.FxR1配置的过滤器编号小,FxR2配置的过滤器编号大.
(5) 同一个寄存器内,按位序从小到大编号. [15-0]位配置的过滤器编号小,[31-16]位配置的过滤器编号大.
(6) 过滤器编号是囗弹性的. 当更改了设置时,每个过滤器的编号都会改变.
但是在设置不变的情况下,各个过滤器的编号是相对稳定的.
这样,每个过滤器在自己在FIFO中都有编号.
在FIFO_0中,编号从0 -- (M-1), 其中M为它的过滤器总数.
在FIFO_1中,编号从0 -- (N-1), 其中N为它的过滤器总数.
一个FIFO如果有很多的过滤器, 可能会有一条报文, 在几个过滤器上均能通过,
这时候, 这条报文算是从哪儿过来的呢?
STM32在使用过滤器时,按以下顺序进行过滤
(1) 位宽为32位的过滤器,优先级高于位宽为16位的过滤器
(2) 对于位宽相同的过滤器,标识符列表模式的优先级高于屏蔽位模式
(3) 位宽和模式都相同的过滤器,优先级由过滤器号决定,过滤器号小的优先级高
按这样的顺序,报文能通过的第一个过滤器,就是该报文的过滤器编号,被存入接收邮箱中.
关键字:STM32 CAN 过滤器
引用地址:
关于STM32的CAN的过滤器
推荐阅读最新更新时间:2024-03-16 14:34
STM32之SPI的思考
选择了与硬件打交道,就得戒骄戒躁,踏踏实实,一步一步的走下去。可能因为一个非常小的问题,就导致你失败。失败不可怕,可怕的是不能静下心来去思考。我在公司第一次调试硬件,spi的通信,是stm32的硬件既有的通信接口。之前用51的io口模拟过i2c的,感觉spi相对来说更简单些,结果调试spi的读写花费了我3天的时间。stm32f0与网上关于stm32f1大量的例程还不一样,刚刚上市半年多,应该是,并且有几项设置是stm32f1没有的,这也正是关键的地方。你直接把他们的程序拿过来用,可能就卡死了,为什么?因为f0多了个fifo设置,fifo不设置,默认应该是half of 32 bits,当你只接收到8个bit时,rxne不会置位,程
[单片机]
STM32+HC05串口蓝牙设计简易的蓝牙音箱
一、环境介绍 MCU: STM32F103C8T6 蓝牙模块: HC05 (串口蓝牙) 音频解码模块: VS1053B OLED显示屏: 0.96寸SPI接口OLED 开发软件: Keil5 上位机: 使用QT设计Android端APP 二、功能介绍 Android手机打开APP,设置好参数之后,选择音乐文件发送给蓝牙音箱设备端,HC05蓝牙收到数据之后,再传递给VS1053进行播放。程序里采用环形缓冲区,接收HC05蓝牙传递的数据,设置好传递的参数之后,基本播放音乐是很流畅的。 完整项目源码下载地址: https://download.csdn.net/download/xiaolong1126626
[单片机]
一种基于DSP芯片与CAN总线的电源监控系统设计
电源技术发展的方向之一是运用电源模块并联技术实现功率合成,组成积木式、智能化的分布式大功率电源系统。为使并联的各个模块协调工作,对分布式电源系统进行可靠的监控是电源技术发展的热点之一。 目前对分布式电源监控普遍采用的做法存在的问题主要在数字化程度不高,速度不够快,精度和可靠性不够高等问题,然而在工业控制中电源控制显的十分的重要。 1电源监控系统总体设计 传统电源系统并联系统多是采用模拟的方法实现模块间的电流均流的,但存在着一些共同的不足:必须有均流控制母线,需要增加专门的均流控制器。且均流母线属于模拟电平信号线,抗干扰能力较弱;难于保证电源模块调制频率的一致。同时,当多个子并联电源单元组成分布式电源系统时,对
[嵌入式]
STM32-(31):独立看门狗
在嵌入式系统中,由于MCU(微控制单元:Microcontroller Unit)的工作常常会受到来自外界电磁场的干扰,造成程序的跑飞,而陷入死循环,程序的正常运行被打断,由单片机控制的系统无法继续工作,会造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测程序运行状态的模块,俗称 看门狗 (watchdog) 在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。所以在使用有看门狗的时候要注意清看门狗。 看门狗是恢复系统的正常运行及有效的监视管理器(具有锁定光驱,锁定
[单片机]
stm32库中地址映射
一、预备知识 在编写ARM9裸机的程序时,读写某个寄存器可用如下代码实现: 例如,要读写UART_ULCON1寄存器的值,查找ARM9的用户手册就可已得到该寄存器地址。 #define UART_ULCON1 (volatile unsigned int *)(0x50004000) 写寄存器: *UART_ULCON1 = 0X00FF; 读寄存器: unsigned int temp; temp = *UART_ULCON1; 二、stm32库中地址映射 在stm32用户手册中找不到绝对的寄存器地址,需要进行换算。例如要找GPIOA中GPIOA_CRL寄存器地址: 第一步:在stm32f10x_reference文档中可查找到
[单片机]
STM32笔记(三)GPIO的配置(用GPIO点亮LED)
GPIO简介 GPIO的英文名称是General Purpose Input Output,顾名思意,就是通用输入输出口,可以用来输入输出高低电平进而控制各种连接在GPIO上的模块等等。STM32的GPIO就是51单片机的P11、P12等等引脚,不过STM32的GPIO更加强大,具有多种模式,为了控制功耗,每一个GPIO都有单独的时钟开关,每使用到一个GPIO都要对其时钟使能,而且STM32的GPIO的输入输出必须单独配置。 GPIO的模式与各种外设GPIO模式的设置 GPIO有八种输入输出模式,对于输出模式还能设置输出的速度,每一个外设对应GPIO口的模式都不全相同,例如使用I2C_SCL的时候GPIO口要设置成
[单片机]
CANOPEN伺服电机的回零控制方法分享
通过总线控制伺服电机时,如何进行回零(寻参考点)控制?这里就CANOPEN伺服电机的回零控制方法分享给大家。 设置回零模式 在CANopen DSP402协议中,伺服电机进行回零动作时,其操作模式由6060h确定,当给6060h的值为6时,则将伺服电机切换为回零模式(HOMING MODE)。在回零动作启动前,可以通过读取6061h的值,以确认电机模式是否设置成功。 一般伺服电机是可以支持多种回零方式的,例如电机使用的是增量编码器,那么可以选择通过C脉冲的回零方式;如果电机使用的是串行编码器或旋转变压器,那么就不能选择通过C脉冲的回零方式。 回零启动控制 当回零模式设置完成后,可以通过控制字启动回零动作。 Controlw
[嵌入式]