单片机的C语言中位操作用法

发布者:shmilyde最新更新时间:2015-10-13 来源: eefocus关键字:单片机  C语言  位操作 手机看文章 扫描二维码
随时随地手机看文章
在对单处机进行编程的过程中,对位的操作是经常遇到的。C51对位的操控能力是非常强大的。从这一点上,就可以看出C不光具有高级语言的灵活性,又有低级语言贴近硬件的特点。这也是在各个领域中都可以看到C的重要原因。在这一节中将详细讲解C51中的位操作及其应用。

1、位运算符

C51提供了几种位操作符,如下表所示:

运算符

含义

运算符

含义

&

按位与

~

取反

|

按位或

<<

左移

^

按位异或

>>

右移

1)“按位与”运算符(&)

参加运算的两个数据,按二进位进行“与”运算。原则是全1为1,有0为0,即:

0&0=0; 0&1=0; 1&0=0; 1&1=1;

如下例:

a=5&3; //a=(0b 0101) & (0b 0011) =0b 0001 =1

那么如果参加运算的两个数为负数,又该如何算呢?会以其补码形式表示的二进制数来进行与运算。

a=-5&-3; //a=(0b 1011) & (0b1101) =0b 1001 =-7

在实际的应用中与操作经常被用于实现特定的功能:

1.清零

“按位与”通常被用来使变量中的某一位清零。如下例:

a=0xfe; //a=0b 11111110

a=a&0x55;

//使变量a的第1位、第3位、第5位、第7位清零 a= 0b 01010100

2.检测位

要知道一个变量中某一位是‘1’还是‘0’,可以使用与操作来实现。

a=0xf5; //a=0b 11110101

result=a&0x08; //检测a的第三位,result=0

3.保留变量的某一位

要屏蔽某一个变量的其它位,而保留某些位,也可以使用与操作来实现。

a=0x55; //a=0b 01010101

a=a&0x0f; //将高四位清零,而保留低四位 a=0x05

 2)“按位或”运算符(|)            

      参与或操作的两个位,只要有一个为‘1’,则结果为‘1’。即有‘1’为‘1’,全‘0’为‘0’。

              0|0=0; 0|1=1; 1|0=1; 1|1=1;

例如:

        a=0x30|0x0f; //a=(0b00110000)|(0b00001111)=(0b00111111)=0x3f

“按位或”运算最普遍的应用就是对一个变量的某些位置‘1’。如下例:

a=0x00; //a=0b 00000000

a=a|0x7f; //将a的低7位置为1,a=0x7f

3)“异或”运算符(^)

      异或运算符^又被称为XOR运算符。当参与运算的两个位相同(‘1’与‘1’或‘0’与‘0’)时结果为‘0’。不同时为‘1’。即相同为0,不同为1。

      0^0=0; 0^1=1; 1^0=1;1^1=0;

例如:

        a=0x55^0x3f; //a=(0b01010101)^(0b00111111)=(0b01101010)=0x6a

异或运算主要有以下几种应用:

      1.翻转某一位

         当一个位与‘1’作异或运算时结果就为此位翻转后的值。如下例:

a=0x35; //a=0b00110101

a=a^0x0f; //a=0b00111010 a的低四位翻转

         关于异或的这一作用,有一个典型的应用,即取浮点的相反数,具体的实现如下:

f=1.23; //f为浮点型变量 值为1.23

f=f*-1; //f乘以-1,实现取其相反数,要进行一次乘运算

f=1.23;

((unsigned char *)&f)[0]^=0x80; //将浮点数f的符号位进行翻转实现取相反数       

      2.保留原值

       当一个位与‘0’作异或运算时,结果就为此位的值。如下例:

a=0xff; //a=0b11111111

a=a^0x0f; //a=0b11110000 与0x0f作异或,高四位不变,低四位翻转

      3.交换两个变量的值,而不用临时变量

       要交换两个变量的值,传统的方法都需要一个临时变量。实现如下:

void swap(unsigned char *pa,unsigned char *pb)

{

unsigned char temp=*pa;//定义临时变量,将pa指向的变量值赋给它

*pa=*pb;

*pb=temp; //变量值对调

}

而使用异或的方法来实现,就可以不用临时变量,如下:

void swap_xor(unsigned char *pa,unsigned char *pb)

{

*pa=*pa^*pb;

*pb=*pa^*pb;

*pa=*pa^*pb; //采用异或实现变量对调

}

从上例中可以看到异或运算在开发中是非常实用和神奇的。

 4)“取反”运算符(~)

         与其它运算符不同,“取反”运算符为单目运算符,即它的操作数只有一个。它的功能就是对操作数按位取反。也就是是‘1’得‘0’,是‘0’得‘1’。

             ~1=0; ~0=1;

如下例:

a=0xff; //a=0b11111111

a=~a; //a=0b00000000

1.对小于0的有符号整型变量取相反数

d=-1;

//d为有符号整型变量,赋值为-1,内存表示为0b 11111111 11111111

d=~d+1; //取d的相反数,d=1,内存表示0b 00000000 00000001        

  此例运用了负整型数在内存以补码方式来存储的这一原理来实现的。负数的补码方式是这样的:负数的绝对值的内存表示取反加1,就为此负数的内存表示。如-23如果为八位有符号整型数,则其绝对值23的内存表示为0b00010111,对其取反则为0b11101000,再加1为0b11101001,即为0XE9,与Keil仿真结果是相吻合的:

   2.增强可移植性

          关于“增强可移植性”用以下实例来讲解:

          假如在一种单片机中unsigned char类型是八个位(1个字节),那么一个此类型的变量a=0x67,对其最低位清零。则可以用以下方法:

a=0x67; //a=0b 0110 0111

a=a&0xfe; //a=0b 0110 0110

上面的程序似乎没有什么问题,使用0xfe这一因子就可以实现一个unsigned char型的变量最低位清零。但如果在另一种单片机中的unsigned char类型被定义为16个位(两个字节),那么这种方法就会出错,如下:

b=0x6767; //假设b为另一种单片机中的unsigned char 类型变量,值为0b 0110 0111 0110 0111

b=b&0xfe; //如果此时因子仍为0xfe的话,则结果就为0b 0000 0000 0110 0110 即0x0066,而与0x6766不相吻合

上例中的问题就是因为不同环境中的数据类型差异所造成的,即程序的可移植性不好。对于这种情况可以采用如下方法来解决:

a=0x67; //a=0b 0110 0111

a=a&~1; //在不同的环境中~1将自动匹配运算因子,实现最后一位清零 a=0x66 其中~1为 0b 11111110

b=0x6767; //a=0b 0110 0111 0110 0111

b=a&~1; //~1=0b 1111 1111 1111 1110,b=0b 0110 0111 0110 0110 ,即0x6766

5)左移运算符(<<)

  左移运算符用来将一个数的各位全部向左移若干位。如:

          a=a<<2

表示将a的各位左移2位,右边补0。如果a=34(0x22或0b00100010),左移2位得0b10001000,即十进制的136。高位在左移后溢出,不起作用。

          从上例可以看到,a被左移2位后,由34变为了136,是原来的4倍。而如果左移1位,就为0b01000100,即十进制的68,是原来的2倍,很显然,左移N位,就等于乘以了2N。但一结论只适用于左移时被溢出的高位中不包含‘1’的情况。比如:

a=64; //a=0b 0100 0000

a=a<<2; //a=0b 0000 0000

其实可以这样来想,a为unsigned char型变量,值为64,左移2位后等于乘以了4,即64X4=256,而此种类型的变量在表达256时,就成为了0x00,产生了一个进位,即溢出了一个‘1’。

          在作乘以2N这种操作时,如果使用左移,将比用乘法快得多。因此在程序中适应的使用左移,可以提高程序的运行效率。

6)右移运算符

         右移与左移相类似,只是位移的方向不同。如:

                  a=a>>1

表示将a的各位向右移动1位。与左移相对应的,左移一位就相当于除以2,右移N位,就相当于除以2N。

          在右移的过程中,要注意的一个地方就是符号位问题。对于无符号数右移时左边高位移和‘0’。对于有符号数来说,如果原来符号位为‘0’,则左边高位为移入‘0’,而如果符号位为‘1’,则左边移入‘0’还是‘1’就要看实际的编译器了,移入‘0’的称为“逻辑右移”,移入‘1’的称为“算术右移”。Keil中采用“算术右移”的方式来进行编译。如下:

d=-32; //d为有符号整型变量,值为-32,内存表示为0b 11100000

d=d>>1;//右移一位 d为 0b 11110000 即-16,Keil采用"算术逻辑"进行编译

7)位运算赋值运算符

          在对一个变量进行了位操作中,要将其结果再赋给该变量,就可以使用位运算赋值运算符。位运算赋值运算符如下:

&=, |=,^=,~=,<<=, >>=

例如:a&=b相当于a=a&b,a>>=2相当于a>>=2。

  8)不同长度的数据进行位运算

          如果参与运算的两个数据的长度不同时,如a为char型,b为int型,则编译器会将二者按右端补齐。如果a为正数,则会在左边补满‘0’。若a为负数,左边补满‘1’。如果a为无符号整型,则左边会添满‘0’。

a=0x00; //a=0b 00000000

d=0xffff; //d=0b 11111111 11111111

d&=a; //a为无符号型,左边添0,补齐为0b 00000000 00000000,d=0b 00000000 00000000

关键字:单片机  C语言  位操作 引用地址:单片机的C语言中位操作用法

上一篇:嵌入式系统中串口通信帧的同步方法研究
下一篇:学习通用IO与外部中断

推荐阅读最新更新时间:2024-03-16 14:35

支持IO-Link V1.1标准的微控制器开发套件(英飞凌)
英飞凌科技股份公司发布可以支持IO-Link V1.1标准的、基于英飞凌16位XE166和8位XC800微控制器的设计评估套件,基于高实时性XE166和低成本XC800微控制器,可支持最多8个带FIFO缓冲的IO-Link通道。与工业自动化领域经验丰富的合作伙伴携手合作开发的这个IO-Link评估套件,可使设备制造商轻松评估基于IO-Link的完整主机从设备系统的功能。 IO-Link是一种标准化点对点通信标准,可简化工厂自动化系统中传感器和执行器的集成度。该系统为终端用户带来了诸多益处,包括更简易、更便宜的电缆连接,远程诊断和配置等。IO-Link系统由一个IO-Link主设备和一个或多个IO-Link从设备(传感器或执行器)构
[嵌入式]
avr单片机定时与中断做的电子琴(仿真+程序)
仿真原理图如下 avr单片机源码: #include iom16v.h #include macros.h #define uchar unsigned char #define uint unsigned int #define LED1_ON() PORTA=0xFE #define LED2_ON() PORTA=0xF7 #define LED3_ON() PORTA=0xBF #define LED4_ON() PORTA=0x7F uchar key_0=16; uint Fr = {0,262*8,294*8,330*8,349*8,392*8,440*8, 494*8,523*8,
[单片机]
avr<font color='red'>单片机</font>定时与中断做的电子琴(仿真+程序)
一种用单片机控制的光谱数据采集系统
摘要:介绍利用单片机和A/D器件MAX120等构成的光谱信号采集系统,由单片机控制A/D产生不同的采样频率,用于光电倍增管和CCD输出的光谱信号的采集。 关键词:单片机 A/D 信号采集 光谱 概述 在光谱测量中,常用光电倍增管(PMT)和电荷耦合器件(CCD)作为光电转换器。在慢变化、高精度光谱测量中使用PMT;对于闪光灯、荧光和磷光等强度随时间变化时的光谱信号则采用CCD。PMT和CCD输出的信号形式是不同的:光电倍增管输出的是连续的模拟信号;CCD输出的是视频脉冲信号。由于输出信号的不同,相应的信号采集电路也不尽相同。本文所述的系统通过设定控制开关的不同状态,由单片机检测、判断和执行相应的操作,完成对不同形式输入信号
[应用]
单片机在电动高尔夫球车永磁无刷直流电机驱动系统的应用
引言   二十一世纪的头一个十年就快悄悄过去了,但人们所热望的电气交通时代却并没有如期而至。在诸多由政府主导、企业和研究机构积极参与的电动车计划如PNGV、Freedom CAR 、PREDIT111在轰隆的引擎声中落幕时人们开始意识到:传统汽车产业的巨大惯性和强大生命力远远超过了他们的想象,在未来相当长的一段时间内,电动汽车还只能停泊在实验室。   现在,纯电动汽车的应用研究转向了以公交车为主的定点、定向运行车辆和社区用车及特定用途的微型车。这类车辆具有一些共同的特点,比如都是由机构管理,在特定区域运行,车速不高。我们可以针对这些特点对车辆的设计和管理进行优化,以降低成本和提高性能,抗衡传统内燃机型汽车,还有一点就是创建
[单片机]
<font color='red'>单片机</font>在电动高尔夫球车永磁无刷直流电机驱动系统的应用
全面抢攻移动医疗商机 ST扩大MCU产品组合
意法半导体(ST)将以更多元的产品组合抢攻移动医疗(Mobile Health)商机。意法半导体将于今年下半年拓展医疗用32位元微控制器产品线,并首度于该产品线中导入ARM Cortex-M0架构,以提供更多低耗电且高性价比的产品选择,全面抢攻移动医疗商机。 意法半导体大中华区暨南亚区产品行销经理杨正廉表示,瞄准智能型手机与移动医疗结合的应用商机,该公司已与手机原始设计制造商洽谈合作机会。 意法半导体大中华区暨南亚区产品行销经理杨正廉表示,近年来意法半导体医疗用微控制器出货量以5%~10%的幅度稳定成长,其中,针对移动医疗所推出的微控制器出货量,每年增长幅度更高达20~30%,因而大力挹注意法半导体的营收。 杨正廉指出,
[模拟电子]
全面抢攻移动医疗商机 ST扩大<font color='red'>MCU</font>产品组合
瞬态电磁脉冲对单片机的辐照效应实验及加固方法
静电放电产生的电磁辐射可产生很强的瞬态电磁脉冲(ESD EMP)。随着电子技术的高速发展,ESD EMP的危害也日趋严重。ESD EMP具有峰值大、频带宽等特点,作为近场危害源,对各种数字化设备的危害程序可与核电磁脉冲(NEMP)及雷电电磁脉冲(LEMP)相提并论 。因此,研究ESD EMP对电子系统的各种效应及防护方法已成为静电防护中的一个热点问题。笔者以单片机系统为实验对象,进行了ESD EMP对单片机系统的辐照效应实验,并在实验的基础上研究了ESD EMP的防护和加固方法。 1 实验配置及方法 1.1 实验配置 实验配置如图1所示。它主要由台式静电放电抗扰性实验标准装置、静电放电模拟器和数据采集系统组成。 根
[单片机]
MSP430FW427无磁水表设计方案详解
  1. MSP430FW42x单片机介绍   MSP430FW42x系列单片机是TI公司针对电子式流量与旋转运动检测最新开发的专用MCU芯片,它将超低功耗MCU、旋转扫描接口 (SCAN IF)和液晶显示LCD驱动模块完美地结合在一起。该器件的超低功耗结构和流量检测模块不仅延长了电池的寿命,同时还提高了仪表的精度与性能。 MSP430FW42x的典型应用包括热量仪表、热水和冷水仪表、气体仪表和工业流量计、风力计以及其他旋转检测应用。   2. 流量测量的原理   2.1 基本原理   一个由叶轮或螺旋齿轮构成的机械装置把流体流动转换为转动,这种转换能够实现对流体流量的测量。   把一个谐振回路中的电感置于叶轮的上方可以
[单片机]
MSP430FW427无磁水表设计方案详解
如何升级STM32单片机的代码
bootloader设置: static void check_boot_mode(void) { uint32_t JumpAddress; void(*Jump_To_Application)(void); if (((*((__IO uint32_t*)(APP_SEGA_START_ADDRESS+8))) & 0x2FFE0000 ) == 0x20000000) { JumpAddress = *(__IO uint32_t*) (APP_SEGA_START_ADDRESS + 12); Jump_To_Application = (void *)JumpAddress; __set_MSP(*((__IO ui
[单片机]
如何升级STM32<font color='red'>单片机</font>的代码
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved