【UART】USCI:UART模式

发布者:创意火花最新更新时间:2015-11-09 来源: eefocus关键字:UART  USCI  UART模式 手机看文章 扫描二维码
随时随地手机看文章
msp430f5419/38学习笔记之USCI:UART模式


   msp430f541x、msp430f543x多达4个通用串行通信接口(USCI)模块,支持多种串行通信模式,不同的 USCI 模块支持不同的模式。

  USCI_Ax模块支持:

  • UART模式;
  • IrDA通信的脉冲整形;
  • LIN通信的自动波特率检测;
  • SPI模式;

  USCI_Bx模块支持:

  • IIC模式;
  • SPI模式;

UART模式:

msp430f5419/38学习笔记之USCI:UART模式
    在异步模式下,USCI_Ax模块通过两个外部引脚UCAxRXD和UCAxTXD将芯片连接到外部系统。当UCSYNC

位清零时,选择UART模式。

msp430f5419/38学习笔记之USCI:UART模式

msp430f5419/38学习笔记之USCI:UART模式
  UART模块特征包括:

  • 带奇校验、偶校验或非奇偶校验的7或8位数据;
  • 独立的发送和接收移位寄存器;
  • 独立的发送和接受缓冲寄存器;
  • 发送和接收的独立中断能力;
  • 最低位优先或最高位优先的数据发送和接收;
  • 多处理器系统的内置空闲线路和地址位通信协议;
  • 用于自动从LPMx模式唤醒的接收机起始边沿检测;
  • 波特率可编程控制,支持小数波特率调制;
  • 用于错误检测和抑制的状态标志;
  • 用于地址检测的状态标志;

一、USCI初始化和复位

   PUC或置位UCSWRST,可以使USCI复位。PUC后,UCSWRST位自动置位,这使 USCI保持在复位状态。UCSWRST位置位,将使UCRXIE,UCTXIE,UCRXIFG,UCRXERR,UCBRK,UCPE,UCOE,UCFE,UCSTOE 和 UCBTOE 位复位,UCTXIFG 位置位。清除 UCSWRST 将释放 USCI,使其进入操作状态。
msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式

推荐使用以下过程,进行初始化或重新配置:

1.置位UCSWRST (BIS.B   #UCSWRST,&UCAxCTL1);

2.2设置UCSWRST=1,初始化所有的USCI寄存器(包括UCAxCTL1);

3.配置端口;

4.软件清除UCSWRST(BIC.B   #UCSWRST,&UCAxCTL1);

5.通过UCRXIE和/或UCTXIE使能中断(可选);

例:串口助手发什么就返回什么.

#include "msp430x54x.h"

// ACLK = REFO = 32768Hz, MCLK = SMCLK = default DCO/2 = 1048576Hz

// P3.4,5——USCI_A0 TXD/RXD;P9.4,5——USCI_A2 TXD/RXD;P10.4,5——USCI_A3 TXD/RXD;

void main(void)
{
  WDTCTL = WDTPW + WDTHOLD;                 // Stop WDT

  P5SEL = 0xc0;                             // P5.6,7 = USCI_A1 TXD/RXD
  UCA1CTL1 |= UCSWRST;                      // **Put state machine in reset**
  UCA1CTL1 |= UCSSEL_2;                     // SMCLK
  UCA1BR0 = 9;                              // 1MHz 115200 (see User's Guide)
  UCA1BR1 = 0;                              // 1MHz 115200
  UCA1MCTL |= UCBRS_1 + UCBRF_0;            // Modulation UCBRSx=1, UCBRFx=0
  UCA1CTL1 &= ~UCSWRST;                     // **Initialize USCI state machine**
  UCA1IE |= UCRXIE;                         // Enable USCI_A1 RX interrupt

  __bis_SR_register(LPM0_bits + GIE);       // Enter LPM0, interrupts enabled
}

// Echo back RXed character, confirm TX buffer is ready first,发送数据之前确定发送缓存准备好

#pragma vector=USCI_A1_VECTOR
__interrupt void USCI_A1_ISR(void)
{
  switch(__even_in_range(UCA1IV,4))
  {
  case 0:break;                             // Vector 0 - no interrupt
  case 2:                                   // Vector 2 - RXIFG
   while (!(UCA1IFG&UCTXIFG));             // USCI_A1 TX buffer ready?
    UCA1TXBUF = UCA1RXBUF;                  // TX -> RXed character
    break;
  case 4:break;                             // Vector 4 - TXIFG
  default: break;
  }
}

// UCTXIFG=0x02,UCA1IFG&UCTXIFG,当UCA1IFG的UCTXIFG位为1时,说明UCA1TXBUF为空,跳出while循环循环;当UCTXIFG位为0时UCA1TXBUF不为空,停在循环。 

msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式

二、USCI中断

    USCI只有一个发送和接收共用的中断向量,USCI_Ax和USC_Bx不共用中断向量。

  2.1 USCI 发送中断操作

    发射机置位 UCTXIFG 中断标志,这表明 UCAxTXBUF 已经准备好接收另一个字符(即UCAxTXBUF 为空)如果UCTXIE 和GIE 也置位的话,将产生中断请求。如果将字符写入,UCAxTXBUF、UCTXIFG将自动复位而无需软件复位。PUC之后或UCSWRST = 1时,UCTXIFG 置位、UCTXIE 复位。

  2.2 USCI 接收中断操作

    每接收到1个字符并将其载入到 UCAxRXBUF 时,UCRXIFG 中断标志置位,如果 UCTXIE 和 GIE 也置位的话,将产生中断请求。UCRXIFG 和UCRXIE 可以通过系统复位PUC信号或 UCSWRST = 1复位。当读取UCAxRXBUF时,UCRXIFG 自动复位。 

msp430f5419/38学习笔记之USCI:UART模式

msp430f5419/38学习笔记之USCI:UART模式

  2.3  UCAxIV,中断向量发生器

     USCI 中断标志具有一定的优先次序,组合使用一个中断向量。中断向量寄存器 UCAxIV 用于确定产生中断的标志。使能的具有最高优先级的中断在 UCAxIV寄存器内产生一个数值,该数值可以加到程序计数器上,从而自动跳转到相应的软件子程序处。禁止中断不会影响 UCAxIV的值。 

     对UCAxIV寄存器的任何访问,读或写,将会自动复位挂起的优先级最高的中断标志。如果另一个中断标志置位,在响应完第一个中断后,立即产生另一个中断。  

三、寄存器

    3.1

msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式
     此寄存器主要是定义数据通信的字符格式,UART 的字符格式包括一个起始位,7 或 8 位数据位,一个奇/偶/非奇偶校验位,地址位(地址位模式),以及1或2个停止位,UCMSB位控制传送方向,选择低位或高位优先,UART 通讯的典型选择是低位优先。

     PUC之后全为0,即 字符长度8、1个停止位、无奇偶校验、低位优先,UART模式。

 msp430f5419/38学习笔记之USCI:UART模式

   UCMODEx Bits2_1位:

   两个芯片进行异步通信时,对协议来说,不需要多处理器格式。当3 个或更多个芯片通信时,USCI 支
持线路空闲和地址位多处理器通信格式。[page]

    3.11 线路空闲多处理器模式(待续)

    3.12 地址位多处理器模式(待续)

    3.13 自动波特率检测(待续)

  3.2

msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式

    此寄存器主要是配置USCI,PUC后时钟选择外部时钟,所以初始化时除了置位 UCSWRST 位外还需配置时钟源。其它的默认就行。

四、低功耗 UART模式下使用 USCI模块

    USCI 模块提供低功耗模式下的自动时钟激活功能。当 USCI 时钟源由于设备处于低功耗模式不活动时,无论时钟源的控制位如何设置,USCI 模块会在需要时激活时钟源,时钟将保持活动状态直到 USCI模块返回空闲状态。USCI模块返回到闲状态后,将反转时钟源控制位的设置。

eg.
void InitUARTA1(void)
{
  UCA1CTL1 |= UCSWRST;// PUC后,UCSWRST位自动置位,这使 USCI保持在复位状态
  UCA1CTL0 = 0x00;                         
  UCA1CTL1 |= UCSSEL_2;                     // SMCLK
  UCA1BR0 = 216;                            // 24MHz 115200
  UCA1BR1 = 0;                              // 24MHz 115200
  UCA1MCTL = UCBRS_2 + UCBRF_0;             // 0x04+0x00
  P5SEL = 0xC0;                             // P5.6/7 = USCI_A0 TXD/RXD
  UCA1CTL1 &= ~UCSWRST;    // **Initialize USCI state machine**,。清除UCSWRST 将释放 USCI,         UCA1IE |= UCRXIE;                          // Enable USCI_A1 RX interrupt
}
#pragma vector = USCI_A1_VECTOR
__interrupt void USCI_A1_ISR(void)
{
  switch (__even_in_range(UCA1IV,4))
  {
  case 0:break;                             
  case 2:
   g_uartBufA[g_bufALen] = UCA1RXBUF;
   if (g_uartBufA[g_bufALen]==0xFF)
   {
    }
   if (g_uartBufA[g_bufALen++]==0xFD) //判断PC机发送的命令帧是否已完
   {
     g_bufALen=0;
     g_uartReceive = 1;// 置位
   }
  break;
  case 4:break;                             // Vector 4 - TXIFG
  default: break;
  }
}
void USciSend( )
{
  unsigned char i;
  for (i = 0; i < g_bufALen; i++)
  {
    while (!(UCA1IFG & UCTXIFG));
    UCA1TXBUF = g_uartBufA[uartBuf1];
  }
}// UCA1MCTL 是UCA1的调制控制寄存器

msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式
msp430f5419/38学习笔记之USCI:UART模式
 

  五、波特率的产生

    USCI 波特率发生器可以从非标准源频率中产生标准的波特率,可以通过UCOS16位选择系统提供的两种操作模式。波特率可以通过使用BRCLK 产生,根据 UCSSELx设置,BRCLK 可以作为外部时钟 UCAxCLK或内部时钟ACLK 或SMCLK 的时钟源。 

  5.1 低频波特率

     当UCOS16=0 时选择低频模式。该模式允许从低频时钟源产生波特率(例如从32768Hz 晶振产生9600波特)。通过使用较低的输入频率,可以降低模块的功耗。在高频和高分频设置下使用这种模式,将会使多数表决在逐渐缩小的窗口中执行,因此会降低多数表决法的优势(下面的例子都是这种模式)。

    在低频模式下,波特率发生器使用1个预分频器和1个调制器产生位时钟时序。这种组合下,产生波特率时支持小数分频;在这种模式下,最大的 USCI波特率是UART 源时钟频率 BRCLK的1/3 。

    每一位的时序如图所示,对于接收的每一位,为了确定该位的值,采用多数表决法。这些采样点发生在N/2-1/2,N/2 和N/2 + 1/2 个BRCLK 周期处,这里N 是每个BITCLK 时钟中 BRCLKs 的数值。 

msp430f5419/38学习笔记之USCI:UART模式
 

    调制是建立在如表15-2 所示的 UCBRSx 设置基础上的。表中1个1 表示m= 1,相应的BITCLK 周期是一个BRCLK 周期,它比m=0 时的BITCLK 周期长。调制在8位后进行,但以新的开始位重新启动。

  5.2 过采样波特率的产生

    当UCOS16=1时,选择过采样模式。该模式支持在较高输入时钟频率下对UART 位流采样。在多数表决方法的结果总是一个位时钟周期的1/16位置。当使能IrDA 编码器和解码器时,这种模式也支持带有3/16位时间的IrDA脉冲。 

    该模式使用一个预分频器和调制器产生BITCLK16 时钟,该时钟比 BITCLK 快16倍。这种组合方式支持波特率产生时 BITCLK16 和BITCLK 的小数分频。在这种情况下,最大的USCI 波特率是 UART源时钟频率BRCLK的1/16。当UCBRx 设置为0或1时,将忽略第一级分频器和调制器,BRCLK等于 BITCLK16—在这种情况下BITCLK16没有调制,因此将忽略 UCBRFx位。 

    BITCLK16 调制是建立在如表15-3 所示的 UCBRFx 设置基础上的。表中1个1 表示相应的 BITCLK16 周期一个BRCLK周期,它比m=0 时的BITCLK16周期长。以每一个新位时序开始调制;BITCLK调制是建立在如前所述的 UCBRSx设置(见表15-2)基础上的。

  5.3 设置波特率

    430的波特率设置用三个寄存器实现: 
    UxBR0:波特率发生器分频系数低8位;
    UxBR1:波特率发生器分频系数高8位;
    UxMCTL:波特率发生器分频系数的小数部分实现; 
    对于给定的BRCLK时钟源,所使用的波特率将决定分频因子 N: N = fBRCLK/波特率。分频因子N 通常不是一个整数值,因此至少需要一个分频器和一个调制器来尽可能接近分频因子,如果N 值等于或大于16,可以通过置位UCOS16 选择过采样波特率产生模式。 

    在低频模式下,分频因子的整数部分通过预分频器实现 UCBRx = INT(N);
    小数部分由带有下面nominal公式的调制器实现: UCBRSx = round((N–INT(N))× 8),(round表示舍入)
UCBRSx计数值增1或减1,对任何给定的位给一个较小的最大比特误差。为了检测是不是这种情况,对于每个UCBRSx设置的每一位都必须经过详细的误差计算;

   在过采样模式下,预分频器设置为:UCBRx = INT(N/16),第一阶调制器设置为:UCBRFx = round(((N/16)– INT(N/16) ) × 16 ),当需要更高精度时,UCBRSx调制器可以实现从 0到7 的值。对于给定位,为了找到最低的最大误码率设置,对于带有初始UCBRFx设置和增1 或减 1的 UCBRFx设置的 UCBRSx从0到7的所有设置,都必须经过详细的误差计算。 
msp430f5419/38学习笔记之USCI:UART模式
 

下面详解上例中的四条语句:

  UCA1CTL1 |= UCSSEL_2;                     // SMCLK
  UCA1BR0 = 216;                            // 24MHz 115200
  UCA1BR1 = 0;                              // 24MHz 115200
  UCA1MCTL = UCBRS_2 + UCBRF_0;             // 0x04+0x00

    这里 SMCLK 已在时钟部分初始化,其时钟源为: Fdcoclkdiv = (760+1)*32768 = 24.936448 MHZ;
分频系数 N = 24936448/115200 = 216.462222,UCA1BR0是分频系统整数部分的低8位、UCA1BR1是高8位,所以..
UCA1MCTL 是波特率发生器分频系数的小数部分,由于是低频模式(UCOS16=0), UCA1MCTL 寄存器中的 UCBRFx 位忽略,而 UCBRSx = round((N–INT(N))× 8) 即 UCBRSx = 0.46×8 四舍五入取为 4。
   UCBRSx 的值也可以这么解释: 0.46*8=3.68 四舍五入为 4个1,把这4个1分成8位均匀排开 01010101 (LSB在前),对照表15-2 查得 UCBRSx=0x04。

【UART】USCI:UART模式

 
 
3.1 串行口寄存器的初始化
     MSP430 的串行口波特发生器使用1 个分频计数器 和1 个调整器, 分频因子N 由送到分频计数器的时钟 ( BRCLK ) 频率和所需的波特率来决定, N=BRCLK/波 特率。 本系统中使用8 MHz 晶振,即BRCLK = 8 MHz ,要求 串行口波特率为1.5Mbps 时,分频因子大约是5.333333。这样波特率发生器的分频计数器BRCLK 值是5 ;而调整 器UMCTL 的值为24H 。当然实际误差为1.56%,为此先采用6 MHz,12 MHz 的晶振进行接收发送测试, 证明这 个误差
关键字:UART  USCI  UART模式 引用地址:【UART】USCI:UART模式

上一篇:系统时钟初始化需要注意的问题
下一篇:RTC时间的安全读取

推荐阅读最新更新时间:2024-03-16 14:38

STM32F0单片机快速入门六 用库操作串口(UART)原来如此简单
1.从 GPIO 到 UART 前面几节我们讲了MCU如何启动,如何用翻转IO引脚,以及用按键去触发中断。接下来我们介绍的也是最常用的一个模块,串口(UART)。 串口可以说是最古老,而且生命力最强的一种通信接口了。RS485总线更是久经考验。虽然串口早已经从大多数PC的标配中去掉了,但是嵌入式系统跟上位PC机通信用的最多的应该还是通过串口转USB吧。 我们用 Keil 打开下面这个工程: STM32Cube_FW_F0_V1.11.0ProjectsSTM32F030R8-NucleoExamplesUARTUART_TwoBoards_ComPollingMDK-ARMProject.uvprojx 这个代码配置串口为 96
[单片机]
MC9S12XEP100 SCI(UART)驱动程序2 - 基于uCOS-II
首先先发一个自己封装的MC9S12XEP100的SCI模块(也就是UART模块)的驱动。这些代码参考了 Li Yuan http://blog.csdn.net/liyuanbhu/article/details/7764851 的代码,整个代码风格是按照uCOS-II操作系统源码的风格来写的,在此表示感谢。 目前还不是特别完整完善,但基本使用是没有问题了。 在上一章中已经发了硬件驱动部分,这里发下基于uCOS-II嵌入式操作系统的驱动部分以及顺便说下怎么用。 首先要记得到上一章中把两个文件存了,顺便还要把.h文件中的 SCI_UCOS_MODULE_ENABLE 后面改为 TRUE 以开启RTOS(嵌入式操作系统
[单片机]
STM32CubeIDE之printf重定向及串口(uart)输出浮点型数据的修改
STM32CubeIDE Version: 1.0.2 Build: 3566_20190716-0927 (UTC) OS: Windows 10, v.10.0, x86_64 / win32 Java version: 1.8.0_202 板卡:NUCLEO-F411RE printf重定向 首先你得配置好串口的各项变量 因为板卡上带有ST-LINK,用的是USART2 我们甚至不用USB转TTL,一根microUSB就能解决 配置变量 然后用IDE生成代码 方式一 贴入以下代码 #include stdio.h /* USER CODE END Includes */ /* Private type
[单片机]
STM32CubeIDE之printf重定向及串口(<font color='red'>uart</font>)输出浮点型数据的修改
STM8--UART2
UART以一个起始位开始通信,起始方法是由TX引脚输出低电平。跟着起始位之后是要发送的8位或者9位数据,如果有奇偶校验则数据后面是奇偶校验的数据信息,最后是停止位,停止位可以设置为1,2,1.5个。 发送配置及单字节通信过程: 寄存器介绍: 控制寄存器 1(UART_CR1): 控制寄存器 2(UART_CR2): 控制寄存器 3(UART_CR3): 波特比率寄存器 1(UART_BRR1): 波特比率寄存器 2 (UART_B): 状态寄存器(UART_SR): 数据寄存器(UART_DR): 使用流程: 1:设置数据长度,奇偶效验,停止位
[单片机]
STM8--<font color='red'>UART</font>2
STM32 UART(接收 ,发送数据)
UART接收发送数据: 平台:STM32F401 discovery版 此代码用的UART6,TX,RX对应的PIN脚是PC6,PC7 如图: 代码如下: 步骤一:初始化串口的GPIO,USART,并且配置上UART的RX中断 void USART6_Config(void) { USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; /* Enable GPIO clock */ RCC_AHB1Per
[单片机]
STM32 <font color='red'>UART</font>(接收 ,发送数据)
STM8 UART 发送器
STM8 UART 发送器 发送器根据M位的状态发送8位或9位的数据字。当M位置1,字长为9位,并且第九位(MSB)应该写入寄存器UART_CR1的T8位。 当发送使能位(TE)被设置时,发送移位寄存器中的数据在TX脚上输出,相应的时钟脉冲在SCLK脚上输出。 字符发送 在UART发送期间,在TX引脚上首先移出数据的最低有效位。在此模式里,UART_DR寄存器有一个缓冲器(TDR),位于内部总线和发送移位寄存器之间。 每个字符之前都有一个低电平的起始位;之后跟着数目可配置的停止位。UART支持以下停止位。 注意: 1.在数据传输期间不能复位TE位,否则将破坏TX脚上的数据,因为波特率计数器停止计数。正在传输的当前数据将丢
[单片机]
STM8 <font color='red'>UART</font> 发送器
ARM9(S3C2440) UART
数据通信的方式 数据通信的方式基本分为: (1)、并行通信:多条数据线将数据的各位同属传送。 特点:传输速度快,适用于短距离通信。 (2)、串行通信:一条数据线将数据一位一位的顺序传送。 特点:线路简单,低成本,适用于远距离通信。 一: 异步通信: 以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然而同一个字符中的两个相邻位之间的时间间隔是固定的。 二: 通信协议 指双方约定的一些规则。在异步通讯时,对数据格式有如下的约定:有空闲位,起始位,资料位,奇偶校验位,停止位。 (1)、起始位:先发送一个逻辑信号“0”信号,表示传输字符的开始。 (2)、数据位:紧接在起始位之后。数
[单片机]
ARM9(S3C2440) <font color='red'>UART</font>
SPI UART TWI 三种串行总线协议的区别
1.SPI(Serial Peripheral Interface:串行外设接口)   管脚:SS/SCK/MOSI(SDO)/MISO(SDI)   结构:一个始终发生器、两个移位寄存器(主从各一个);     使用:初始化(完成对两器件器件SPI使能、主从设置、SCK设置、IO方向、采样沿);              编写数据读/写函数(只要发生一次数据传送,两器件的SPIF位就会置位,从而读写);               必要时加入中断程序;   注意:两个寄存器是互通的,其工作过程见网硬盘,从百度文库搜集。因此主机读从机数据必须发送两个字节,第一个是命令字节,告诉从机要准备数据于从机SPD
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved