CAN波特率的计算公式如下:
其中tcan是CAN系统时钟的一个周期,tbit是一个CAN位周期。
以VPB时钟Fpclk=24MHz,选择采样点位置在85%左右为佳,即使TESG1/(TESG1+TESG2)在85%左右,2
当VPB时钟为4*11059200Hz时,常用波特率与总线时序器对照表(周立功给的,11059200kHz的波特率都是近似的,有误差)BPS = (SAM << 23)|(TSEG2 << 20)|(TSEG1 << 16)|(SJW << 14)| BRP
#define BPS_5K
#define BPS_10K
#define BPS_20K
#define BPS_40K
#define BPS_50K
#define BPS_80K
#define BPS_100K
#define BPS_125K
#define BPS_200K
#define BPS_250K
#define BPS_400K
#define BPS_500K
#define BPS_666K
#define BPS_800K
#define BPS_1000K
以下是我自己推导的(仅供参考)
CANBTR(0xE00xx014)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SAM | TSEG2 | TSEG1 | SJW | 0 | 0 | 0 | 0 | BRP |
Can控制器器只需要进行少量的设置就可以进行通信,就可以像RS232/48那样使用。
其中较难设置的部分就是通信波特率的计算。CAN总线能够在一定的范围内容忍总线上CAN节点的通信波特率的偏差,这种机能使得CAN总线有很强的容错性,同时也降低了对每个节点的振荡器精度。
实际上,CAN总线的波特率是一个范围。假设定义的波特率是250KB/S,但是实际上根据对寄存器的设置,实际的波特率可能为200~300KB/S(具体值取决于寄存器的设置)。
简单介绍一个波特率的计算,在CAN的底层协议里将CAN数据的每一位时间(TBit)分为许多的时间段(Tscl),这些时间段包括:
A. 位同步时间(Tsync)
B. 时间段1(Tseg1)
C. 时间段2(Tseg2)
其中位同步时间占用1个Tscl;时间段2占用(Tseg1+1)个Tscl;时间段2占用(Tseg2+1)个Tscl,所以CAN控制器的位时间(TBit)就是:
TBit=Tseg1+Tseg2+Tsync=(TSEG1+TSEG2+3)*Tscl,
那么CAN的波特率(CANbps)就是1/TBit。
但是这样计算出的值是一个理论值。在实际的网络通信中由于存在传输的延时、不同节点的晶体的误差等因素,使得网络CAN的波特率的计算变得复杂起来。CAN在技术上便引入了重同步的概念,以更好的解决这些问题。这样重同步带来的结果就是要么时间段1(Tseg1)增加TSJW(同步跳转宽度SJW+1),要么时间段减少TSJW,因此CAN的波特率实际上有一个范围:
1/(Tbit+Tsjw) ≤CANbps≤1/(Tbit-Tsjw)
CAN有波特率的值四以下几个元素决定:
A. 最小时间段Tscl;
B. 时间段1 TSEG1;
C. 时间段2 TSEG2;
D. 同步跳转宽度 SJW
那么Tscl又是怎么计算的呢?这是总线时序寄存器中的预分频寄存器BRP派上了用场,Tscl=(BRP+1)/FVBP。FVBP为微处理器的外设时钟Fpclk。
而TSEG1与TSEG2又是怎么划分的呢?TSEG1与TSEG2的长度决定了CAN数据的采样点,这种方式允许宽范围的数据传输延迟和晶体的误差。其中TSEG1用来调整数据传输延迟时间造成的误差,而TSEG2则用来调整不同点节点晶体频率的误差。但是他们由于过于灵活,而使初次接触CAN的人有点无所适从。TSEG1与TSEG2的是分大体遵循以下规则: Tseg2≥Tscl2,Tseg2≥2TSJW,Tseg1≥Tseg2
总的来说,对于CAN的波特率计算问题,把握一个大的方向就行了,其计算公式可以规结为:
BitRate = Fpclk/( (BRP+1) * ((Tseg1+1)+(Tseg2+1)+1)
关于CAN的波特率的计算,在数据手册上已经有很详细的说明。在此,简要的把计算方法给出来:
Tcsc :bit位每一编码的时间长度,每bit可以配置为8~25位编码,常设为16 。
Tcsc=1/波特率/编码长度 ;按上面计算 Tcsc="1/1MHz/16"=62.5ns (取63) 。
BRP = (Tcsc x MCK) - 1=6.3-1 (可以取 5)
各种延迟(Tprs :)
Delay of the bus driver: 50 ns
Delay of the receiver: 30ns
Delay of the bus line (20m): 110ns
Tprs = 2 * (50+30+110) ns = 380 ns
PROPAG= 380 ns/ Tcsc-1 =6.08Tcsc-1 (可取 6)
Tphs1 + Tphs2 = bit time - Tcsc - Tprs = (16 - 1 - 7)Tcsc= 8
常取 Tphs1 = Tphs2 ,所以 Tphs1 = Tphs2 =4 ;
Tsjw = Min(4 Tcsc,Tphs1) = 4 Tcsc (From 1 to Tphs1 )
SJW = Tsjw/Tcsc - 1 = 3 ;
现在CAN_BR 中的各个参数就都有了(BRP=5 ;SJW=3;PROPAG=6;PHASE1=PHASE=4),填进去就应该OK了 。
假设我们先不考虑BTR0中的SJW位和BTR1中的SAM位。那么,BTR0和BTR1就是2个分频系数寄存器;它们的乘积是一个扩展的分频系数。即:
(1)式中,当晶振为16M时,F_BASE=8000K
同步段+相位缓冲段1+相位缓冲段2 =1+5+4
则(2)式简化为
上一篇:在IAR环境下LPC2129平台上脉冲捕捉导致死机问题
下一篇:CAN总线波特率计算及设置方法(STM32,SJA1000,LPC2292)
推荐阅读最新更新时间:2024-03-16 14:51