ARM LDR/STR, LDM/STM 指令

发布者:自由探索最新更新时间:2016-05-09 来源: eefocus关键字:ARM  LDR  STR  LDM  STM  指令 手机看文章 扫描二维码
随时随地手机看文章
这里比较下容易混淆的四条指令,已经在这4条指令的混淆上花费了很多精力,现在做个小结,LDR,STR,LDM,STM这四条指令,

关于LDM和STM的说明,见另外一个说明文件,说明了这两个文件用于栈操作时的注意事项。

(1)LDR:L表示LOAD,LOAD的含义应该理解为:Load from memory into register。下面这条语句就说明的很清楚:

LDR   R1,     [R2] ; R1<——[R2]

就是把R2所指向的存储单元的内容的值(一个memory地址内的值),读取到R1中(一个register) 

(2)STR:S表示STORE,STORE的含义应该理解为:Store from a register into memory。下面这条语句表示的很清楚:

STR    R1,     [R2] ; R1——>[R2]

就是把寄存器R1中的内容“保存”到R2所指向的存储的单元中(一个memory地址)。

显然,这两条语句都有个特点,就是寄存器写在前面(左边)而内存地址写在后面(右边),数据传送的方向则是恰好相反的。 

下面对LDM和STM介绍,使用sp来介绍,因为实际使用中,和sp一起使用更多。 

(3)LDM:L的含义仍然是LOAD,即是Load from memory into register。

虽然貌似是LDR的升级,但是,千万要注意,这个指令运行的方向和LDR是不一样的,是从左到右运行的。

该指令是将内存中堆栈内的数据,批量的赋值给寄存器,即是出栈操作;

其中堆栈指针一般对应于SP,注意SP是寄存器R13,实际用到的却是R13中的内存地址,只是该指令没有写为[R13],

同时,LDM指令中寄存器和内存地址的位置相对于前面两条指令改变了,下面的例子:

LDMFD     SP! ,   {R0, R1, R2} ; 实际上可以理解为:    LDMFD     [SP]!,    {R0, R1, R2}

意思为:把sp指向的3个连续地址段(应该是3*4=12字节(因为为r0,r1,r2都是32位))中的数据拷贝到r0,r1,r2这3个寄存器中去

(如果这个地方还不懂的话,可以参看我文章开头提到的链接,里面有详细的图解) 

(4)STM:S的含义仍然是STORE,与LDM是配对使用的,其指令格式上也相似,即区别于STR,是将堆栈指针写在左边,而把寄存器组写在右边。

   STMFD      SP!,   {R0} ; 同样的,该指令也可理解为:  STMFD      [SP]!,   {R0}

意思是:把R0保存到堆栈(sp指向的地址)中。 

显然,这两个堆栈操作指令也有个特点,就是寄存器组写在后面(右边)而堆栈指针写在前面(左边),

而且实际上使用的是堆栈指针中的内存地址,这一点与前面两条指令是有区别的。

(补充:sp后面的!,作用是指命令执行完后,对应的地址值赋给sp,对于例程的SDM,是说最后sp的值应该是sp+3*4=sp+12)

这四条指令中,前面两条和后面两条其实联系不多,反而是差别很大,因此,可以直接把这两组指令区分开来,认为它们之间没有联系,这样避免误解。

STM和LDM的主要用途是现场保护、数据、参数传递等,其模式有8种,如下:

注:前面4种用于数据块的传输,后面4种用于堆栈操作

(1)IA  每次传送后地址加4 -- Inc After

(2)IB  每次传送前地址加4 -- Inc Before

(3)DA  每次传送后地址减4 -- Dec After

(4)DB  每次传送前地址减4 -- Dec Before

(5)FD  满递减堆栈

(6)FA  满递增堆栈

(7)ED  空递减堆栈

(8)EA  空递增堆栈

下面的讲述对于空递减堆栈和空递增堆栈同样适用.

在堆栈操作时,经常错误以为使用STMFD满递减将寄存器压入堆栈后,在弹出数据的时候应该使用LDMFA。

但是FD和FA仅用于指示目前操作的堆栈是何种模式(堆栈共有四种模式),FD指明目前的堆栈是满递减堆栈,

则数据入栈时的指令为STMFD,那么数据出栈时的指令对应的为LDMFD,而不是LDMFA。

我们可以这样认为STMFD等价于STMDB,LDMFD等价于STMIA

那么,数据传输的顺序和数据入栈的顺序又是如何呢

先来看STMFD SP!,{R1-R3}  执行的结果图(操作之后SP指向SP')

                 SP->
                           R3
                           R2
                 SP'>R1

 

那么STMFD SP!,{R3,R2,R1}执行后的堆栈顺序是不是刚好和上面的堆栈顺序相反,实际情况时这两个指令执行后的堆栈数据顺序一样,

因为ARM编译器会自动将STMFD SP!,{R3,R2,R1}转换为STMFD SP!,{R0-R3}指令,也就是说,ARM编译器默认高寄存器优先存入堆栈。

即便你在指令STMFD SP!,{R3,R2,R1}中刻意“安排”了寄存器入栈顺序,而在编译时编译器又重新做了处理,打乱了你期望的数据入栈顺序。

同理STMDB R0!,{R1-R3}和STMDB R0!,{R3,R2,R1}指令执行后数据在堆栈中的顺序完全一致。

STMFD SP!,{R1-R3}指令对应的出栈指令是LDMFD SP!,{R1-R3}(R1,R2,R3的顺序任意)

关键字:ARM  LDR  STR  LDM  STM  指令 引用地址:ARM LDR/STR, LDM/STM 指令

上一篇:ARM 关键几个寄存器
下一篇:ARM 非对齐的数据访问操作

推荐阅读最新更新时间:2024-03-16 14:53

STM32实验1:IO输出
LED控制端口初始化 //初始化PA8和PD2为输出口.并使能这两个口的时钟 //LED IO初始化void LED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//使能APB2外设时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mod
[单片机]
基于Berkeley DB的机房环境监控系统
  引言   随着社会信息化进程的发展,许多行业部门的中心机房设备和规模也日趋扩大,配套的环境设备也日益增多,一旦机房的环境设备出现故障,将直接影响计算机系统的安全运行,后果不堪设想。为了保证安全,对机房的环境设备进行自动监控是极其重要的。   1 机房环境设备监控的主要内容及基本功能   机房环境设备监控的主要内容有:机房用电的检测;对机房低压配电柜,UPS电源设备的输入端和输出端,各回路的电压、电流、频率、电功率的监测;温度、湿度的监测;机房漏水的监测;消防的监测。   通过对机房环境设备特点的分析,可把机房环境监控系统的基本功能概括为:现场数据的实时采集、发送和显示;对采集到的数据进行处理和存储;对数据处理的结果进行
[单片机]
基于Berkeley DB的机房环境监控系统
STM32是12位ADC
STM32是12位ADC,测量结果基本还可以!程序用了DMA来传输ADC转换值,调高了读取速度。串口部分用是上一篇串口调试笔记里的代码。 /************************************************************************ Copyright (c) 2008 wormchen All rights reserved 文 件 名: main.c 说 明: 将ADC转换值通过串口发送到PC端 主要硬件: EMSTM32V1+miniSTMV100(外部8MRC) 编译环境: MDK3.10 ***********************************
[单片机]
STM32中按键中断分析(附源码)
  在按键学习中,我们有用到查询的方法来判断按键事件是否发生,这种查询按键事件适用于程序工作量较少的情况下,一旦程序中工作量较大较多,则势必影响程序运行的效率,为了简化程序中控制的功能模块的执行时间,引入中断控制就很有必要,,一旦有中断时间发生,则程序立马跳转到中断向量的执行程序中,执行完成后就恢复到正常的程序状态。   在STM32F中采用中断控制器NVIC来设定中断。按照中断初始化配置的结构体文件,我们需要在NVIC初始化结构体配置如下:   void EXti_PB12_Config(void)   {   //定义结构体   GPIO_InitTypeDef GPIO_InitStructure;   EXTI_I
[单片机]
ARM SDT汇编格式与GNU汇编格式的移植
问题:如何将ARM SDT环境下的汇编代码移植到GCC编译环境中? 回答:将ARM SDT下的汇编码移植到GCC for ARM编译器时,经常要做如下修改: 1、注释行以“#”或“/* ... */”代替“;” 2、伪操作符替换: INCLUDE 替换成 .INCLUDE TCLK2 EQU PB25 替换成 .equ TCLK2, PB25 EXPORT 替换成 .global IMPORT 替换成 .extern DCD 替换成 .long IF :DEF: 替换成 .IFDEF ELSE 替换成 .ELSE ENDIF 替换成 .ENDIF :OR: 替换成 | :SHL:
[单片机]
HI3531串口测试程序(arm
#include stdio.h unsigned int UART0_ADDR = 0x20080000; unsigned int retu=0; int i=0; void delay_x(unsigned short cycles) { unsigned short t; t = cycles; while ( --t != 0 ); } int main() { ///////////初始化部分//////////////////////////////////////////////////// retu = *(unsigned int *)(UART0_ADDR + 0X30);//uart_c
[单片机]
STM32 测量交流电压的方法
关于STM32测量交流电的一种方法. 关于交流电压测量的难点有以下几点:1.电压过大,比如市电220V,2.交流电和直流电区别很大,例如值一直在变不稳定.3.交流电压存在负值,STM32 的AD模块没法测量.4.STM32读取的电压值是瞬时值和交流电的有效值还要转换. 针对以上几点:可以采取合适的硬件设计和算法设计解决.采用电流互感器将电压从高变低,采用直流电压叠加的方式将整体的交流波形抬升,抬升到最低都大于零.至于读取到的数值采用均方根的算法算出交流有效值.另外还要注意一点是采样周期的设置. 电路设计: 这个硬件电路设计很完善.还有一种: 第二种电路结构更简单,但是运放采用的是用于测量交流信号的MCP
[单片机]
<font color='red'>STM</font>32 测量交流电压的方法
学习单片机和STM32的一道坎
刚开始学单片机的你,是不是会因用程序把LED点亮而感到高兴,会因用程序把数码管点亮而感到高兴。这是好事,这也是想继续学习下去的动力。 但是数据相关的实验是学习单片机和STM32的一道坎,此时就需要用好本文要说的串口这个调试工具。串口通信介绍关于串口通信的介绍,也可以点击阅读之前发的一篇文章:STM32串口通信基本原理。串口通信是指外设和计算机间,通过数据信号线 、地线、控制线等,按位进行传输数据的一种通讯方式......这种太过理论了,看似懂了,但又不懂。还是用我笔者自己的话来说吧。串口通信就是可以把程序在单片机或者STM32芯片中运行的结果发送到电脑的一种通信方式。 如何使用串口通讯,你需要知道的几个重要的知识点: 波特
[单片机]
学习单片机和<font color='red'>STM</font>32的一道坎
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved