STM32单片机学习(11) DS18B20温度传感器实验

发布者:chang_ri最新更新时间:2016-06-03 来源: eefocus关键字:STM32  单片机学习  DS18B20  温度传感器 手机看文章 扫描二维码
随时随地手机看文章
本程序主要实现 DS18B20温度传感器数据获取,并利用串口通信把温度数据传至计算机

注:使用普中科技开发板测试时,需要拔掉Boot1插口,因为用到的是PA15管脚, 由开发板电路图可知,需要改变PA15 管脚的映射,将其设置成普通IO口

参考资料

DS18B20中文手册.pdf   http://download.csdn.net/detail/leytton/7742193

STM32-外设篇 视频教程(Cortex-M3)-主讲人:刘洋   http://yun.baidu.com/pcloud/album/info?uk=2853967793&album_id=5492137931588632574

main.c

 

/*
*	
* 软件功能:	 DS18B20温度传感器
* 
*/
#include "stm32f10x.h"
#include 
#include "delay.h"
#include "ds18b20.h"
  
void RCC_Configuration(void);
void GPIO_Configuration(void);
void USART1_Configuration(void);
void Uart1_PutChar(u8 ch);
void Uart1_PutString(u8* buf , u8 len);
int fputc(int ch, FILE *f);
							
/*
函数: int main(void)
功能: main主函数
参数: 无
返回: 无
/
int main(void)
{
  double temperature=0;
  RCC_Configuration();
  GPIO_Configuration();
  delay_init(72);
  USART1_Configuration();
  
  while(1)
  {  
	  if(!DS18B20_Is_Exist())
	  {
	  	 printf("未检测到DS18B20温度传感器...\n");
		 delay_ms(500);
	  }
	  else
	  {
	  	 printf("检测到DS18B20温度传感器\n获取数据中...\n");
		 temperature=DS18B20_Get_wd();
	     printf("当前温度:%0.4lf ℃\n\n",temperature);
	  }
  }
}

/*
函数: void RCC_Configuration(void)
功能: 复位和时钟控制 配置
参数: 无
返回: 无
/
void RCC_Configuration(void)
{
  ErrorStatus HSEStartUpStatus;                    //定义外部高速晶体启动状态枚举变量
  RCC_DeInit();                                    //复位RCC外部设备寄存器到默认值
  RCC_HSEConfig(RCC_HSE_ON);                       //打开外部高速晶振
  HSEStartUpStatus = RCC_WaitForHSEStartUp();      //等待外部高速时钟准备好
  if(HSEStartUpStatus == SUCCESS)                  //外部高速时钟已经准别好
  {
    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的用法.位置:RCC初始化子函数里面,时钟起振之后
    FLASH_SetLatency(FLASH_Latency_2);                    //flash操作的延时
      	
    RCC_HCLKConfig(RCC_SYSCLK_Div1);               //配置AHB(HCLK)时钟等于==SYSCLK
    RCC_PCLK2Config(RCC_HCLK_Div1);                //配置APB2(PCLK2)钟==AHB时钟
    RCC_PCLK1Config(RCC_HCLK_Div2);                //配置APB1(PCLK1)钟==AHB1/2时钟
         
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);  //配置PLL时钟 == 外部高速晶体时钟 * 9 = 72MHz
    RCC_PLLCmd(ENABLE);                                   //使能PLL时钟
   
    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)    //等待PLL时钟就绪
    {
    }
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);            //配置系统时钟 = PLL时钟
    while(RCC_GetSYSCLKSource() != 0x08)                  //检查PLL时钟是否作为系统时钟
    {
    }
  }
  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1 | RCC_APB2Periph_AFIO, ENABLE);  //允许 GPIOA、USART1、AFIO时钟
}

/*
函数: void GPIO_Configuration(void)
功能: GPIO配置
参数: 无
返回: 无
/
void GPIO_Configuration(void)
{
  
  GPIO_InitTypeDef GPIO_InitStructure;        //定义GPIO初始化结构体

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; 
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复合推挽输出 	 
  GPIO_Init(GPIOA, &GPIO_InitStructure); 	   //PA9串口输出

  //把调试设置普通IO口
  GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable,ENABLE);  

  // 改变指定管脚的映射 GPIO_Remap_SWJ_JTAGDisable ,JTAG-DP 禁用 + SW-DP 使能
  GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable , ENABLE);
  
}


/*
	函数名:USART1_Configuration
	输  入:
	输  出:
	功能说明:
	初始化串口硬件设备,启用中断
	配置步骤:
	(1)打开GPIO和USART1的时钟
	(2)设置USART1两个管脚GPIO模式
	(3)配置USART1数据格式、波特率等参数
	(4)使能USART1接收中断功能
	(5)最后使能USART1功能
*/
void USART1_Configuration(void)	  //串口配置   详见《STM32的函数说明(中文).pdf》P346
{
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate=9600;   //波特率为9600
	USART_InitStructure.USART_WordLength=USART_WordLength_8b;  //数据位为8
	USART_InitStructure.USART_StopBits=USART_StopBits_1; //在帧结尾传输 1 个停止位
	USART_InitStructure.USART_Parity=USART_Parity_No; //校验模式:奇偶失能
	USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; //硬件流控制失能
	USART_InitStructure.USART_Mode=USART_Mode_Tx | USART_Mode_Rx; //USART_Mode 指定了使能或者失能发送和接收模式:发送使能|接收失能
	USART_Init(USART1, &USART_InitStructure);	  //初始化配置

	USART_Cmd(USART1,ENABLE);	//使能或者失能 USART 外设
	USART_ClearFlag(USART1, USART_FLAG_TC);//清除传输完成标志位,否则可能会丢失第1个字节的数据.USART_FLAG_TC为发送完成标志位
}


//发送一个字符
void Uart1_PutChar(u8 ch)
{
    USART_SendData(USART1, (u8) ch);
    while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);//等待发送完成
}

//发送一个字符串 Input : buf为发送数据的地址 , len为发送字符的个数
void Uart1_PutString(u8* buf , u8 len)
{   
	u8 i;
    for(i=0;i

DS18B20.h

 

 

#ifndef __DS18B20_H
#define __DS18B20_H 			   
#include "stm32f10x.h"

#define DS18B20_Pin GPIO_Pin_15
#define DS18B20_GPIO GPIOA

#define DS18B20_DQ_High() GPIO_SetBits(DS18B20_GPIO,DS18B20_Pin)
#define DS18B20_DQ_Low()  GPIO_ResetBits(DS18B20_GPIO,DS18B20_Pin)

void DS18B20_IO_IN(void);
void DS18B20_IO_OUT(void);
u8 DS18B20_Read_Byte(void);
void DS18B20_Write_Byte(u8 dat);
void DS18B20_Reset(void);
double DS18B20_Get_wd(void);
u8 DS18B20_Is_Exist(void);

#endif

 

 

DS18B20.c
#include "stm32f10x.h"
#include "ds18b20.h"
#include "delay.h"


void DS18B20_IO_IN(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;        //定义GPIO初始化结构体
	GPIO_InitStructure.GPIO_Pin = DS18B20_Pin; 		
  	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;  //配置成上拉输入; 
    GPIO_Init(DS18B20_GPIO, &GPIO_InitStructure);
}

void DS18B20_IO_OUT(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;        //定义GPIO初始化结构体
	GPIO_InitStructure.GPIO_Pin = DS18B20_Pin; 		
  	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  //配置成推挽输出; 
    GPIO_Init(DS18B20_GPIO, &GPIO_InitStructure);
}

u8 DS18B20_Read_Byte(void)
{
	u8 i=0,TmpData=0;
	for(i=0;i<8;i++)
	{
		  TmpData>>=1;		   //右移

		  DS18B20_IO_OUT();	   //输出模式

		  DS18B20_DQ_Low();	   //拉低

		  delay_us(4);         //延时4us
		  DS18B20_DQ_High();     //拉高,释放总线
		  delay_us(10);        //延时10us

		  DS18B20_IO_IN();     //输入模式 

		  if(GPIO_ReadInputDataBit(DS18B20_GPIO,DS18B20_Pin)== 1)  TmpData |=0x80; //读取数据 ,从低位开始

		  delay_us(45);        //延时45us
	}

	return 	TmpData;
}

void DS18B20_Write_Byte(u8 dat)
{
	u8 i=0;

	DS18B20_IO_OUT();	   //输出模式

	for(i=0;i<8;i++)
	{  
		  DS18B20_DQ_Low();	   //拉低
		  delay_us(15);         //延时15us

		  if(dat&0x01==0x01)  DS18B20_DQ_High(); 
		  else 	DS18B20_DQ_Low();

		  delay_us(60);        //延时60us

		  DS18B20_DQ_High();   //拉高

		  dat>>=1;  //准备下一位数据的写入
	}

}

//复位函数
void DS18B20_Reset(void)
{
	   DS18B20_IO_OUT();	   //输出模式
	   DS18B20_DQ_Low();	   //拉低
	   delay_us(480);        //延时480us
	   DS18B20_DQ_High();
	   delay_us(480);        //延时480us

}


//返回温度值
double DS18B20_Get_wd(void)
{
	u8 TL=0,TH=0;
	u16 temp=0;
	double wd=0;

	DS18B20_Reset();//复位
	DS18B20_Write_Byte(0xCC); //跳过ROM命令
	DS18B20_Write_Byte(0x44); //温度转换命令

	delay_ms(800);//延时800毫秒
	DS18B20_Reset();//复位
	DS18B20_Write_Byte(0xCC); //跳过ROM命令
	DS18B20_Write_Byte(0xBE); //读温度命令

	TL=DS18B20_Read_Byte();//LSB
	TH=DS18B20_Read_Byte();//MSB

	temp=TH;
	temp=(temp<<8)+TL;

	if((temp&0xF800)==0xF800)//负温度判断
	{
		temp=~temp;
		temp=temp+1;
		wd=temp*(-0.0625);
	}
	else
	{
		wd=temp*0.0625;	
	}
	return wd;
}

//等待DS18B20的回应
//返回1:检测到DS18B20的存在
//返回0:不存在
u8 DS18B20_Is_Exist(void) 	   
{   
	   DS18B20_IO_OUT();	   //输出模式
	   DS18B20_DQ_High();   //默认高电平

	   DS18B20_DQ_Low();	   //拉低
	   delay_us(600);        //延时600us
	   DS18B20_DQ_High();
	   delay_us(100);        //延时100us

	   DS18B20_IO_IN();	   //输入模式
	   if(GPIO_ReadInputDataBit(DS18B20_GPIO,DS18B20_Pin)== 0)	 return 1;	 
	   else  return 0;

}
关键字:STM32  单片机学习  DS18B20  温度传感器 引用地址:STM32单片机学习(11) DS18B20温度传感器实验

上一篇:STM32单片机学习(13) I2C读写AT24Cxx存储器实验
下一篇:STM32单片机学习(5) 定时器中断实验

推荐阅读最新更新时间:2024-03-16 14:56

STM32复习笔记(一) GPIO的输入与输出
一、GPIO基本结构: 二、GPIO工作方式: u4种输入模式:输入浮空、输入上拉、输入下拉、模拟输入 u4种输出模式:开漏输出、开漏复用功能、推挽式输出、推挽式复用功能 u3种最大翻转速度: -2MHZ-10MHz -50MHz (1) GPIO_Mode_AIN 模拟输入 (2) GPIO_Mode_IN_FLOATING 浮空输入 (3) GPIO_Mode_IPD 下拉输入 (4) GPIO_Mode_IPU 上拉输入 (5) GPIO_Mode_Out_OD 开漏输出 (6) GPIO_Mode_Out_PP 推挽输出 (7) GPIO_Mode_AF_OD 复用开漏输出 (8) GPIO_Mode_AF_PP 复
[单片机]
<font color='red'>STM32</font>复习笔记(一) GPIO的输入与输出
大学生应该学习单片机什么知识
有不少的在校的大学生写信给我,问在学校里应该学习什么电子知识.就业形势越来越严峻,不光是在中国,全球都一样,全球经济的发展速度放慢,至少会持续几年的时间.半导体产业目前进入低潮,很多公司裁员和亏损.但是技术还是在不断进步,摩尔定律还在起作用,半导体产品的集成度,速度,价格都按摩尔定律在发展.在大学里只是混混日子的大学生不少,但也有一些比较努力的学生,想掌握更多的知识, 希望能够在毕业之后找到好的工作,或者想创造一番事业,对于这些学生,我是赞赏的.我相信一分辛劳一分收获,你的努力是不会白费的.这个世界是适者生存,不适者淘汰的社会.像华为公司,进进出出的人不计其数,能适应的,留,不适应的,走. 有网友问我,你在大学里是怎么度过的?
[单片机]
STM32指针的理解
指针的定义 : 自己总结为,指针是用来存放某种类型变量的地址的变量 比如 unit8 * p = 0x5555 5555 指针p 表示用来存放 unit8类型变量的地址的变量 *指针是变量 *指针是存放地址的变量 *指针是存放某种类型变量的地址的变量 百度上定义说: 它的值直接指向(points to)存在电脑存储器中另一个地方的值。 上例子中 *p 就表示0x5555 5555这个地址中存放的数 指针定义的格式:(数据类型+星号)+变量名称 比如下面两个例子 int * xxx YYY * xxx 指针的含义: 此时xxx这个变量就成为一个指针,这个
[单片机]
STM32关于各种头文件No such file&nb
1.首先,一定要清晰的了解工程设置路径的含义,为什么要设置这个路径而不是别的?出于什么原因设置的?答:工程设置的路径是在搜索*.h文件。 下图是我的工程路径,其中User文件夹是用来存放我自己需要编写或修改的文件。 我们再看来一下User路径下的文件。其中3个.c文件和2个.h文件都是在官方库的STM32F10x_StdPeriph_Lib_V3.5.0ProjectSTM32F10x_StdPeriph_ExamplesSDIO路径下复制过来的。 STM32_EVAL存放着从官方库里边复制过来的 stm32_eval.c stm32_eval.h stm32_eval_sdio_sd.c stm32_eval_sdio_sd
[单片机]
<font color='red'>STM32</font>关于各种头文件No such file&nb
集成型温度传感器解决散热难题
随着电子系统越来越朝着多功能、更高性能和更小封装的趋势发展,系统散热问题日渐成为设计环节中必须考虑的因素。系统过热会降低性能,损坏元件或产生安全隐患。为跟踪并降低系统散热而引发的问题,通常需要监控两个参数:持续温度测量和过热警报。 持续温度测量使处理器可以监测到系统温度的上升或下降,并根据测得的温度采取弥补措施。例如,由于功率放大器(PA)会受到系统升温的影响,因此它可以显示增益的升高。增益升高导致功率放大器使用更大的功率,产生更多热量,继而使用更高的电能,这被称为热逸散。例如,在无线传感器网络应用中,过大的增益会导致电池比预期耗电更快。通过监控温度,处理器可以调节放大器的增益,从而确保功率的耗散与设计者预期相符。 在系统
[嵌入式]
STM32 系统时钟和SysTick定时器
1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI、HSE、LSI、LSE、PLL (1)HSI是高速内部时钟,RC振荡器,频率为8MHz; (2)HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz; (3)LSI是低速内部时钟,RC振荡器,频率为40KHz; (4)LSE是低速外部时钟,接频率为32.768KHz的石英晶体; (5)PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL的输入可以接HSI/2、HSE或者HSE/2。倍频可选择为2 – 16倍,但是其输出频率最大不得超过72MHz。 其中,40kHz的LSI供独
[单片机]
STM32 DMA->内存到内存
基于STM32 F401 Discovery板: DMA2在AHB1总线上 步骤一:使能DMA #define DMA_STREAM_CLOCK RCC_AHB1Periph_DMA2 RCC_AHB1PeriphClockCmd(DMA_STREAM_CLOCK, ENABLE); 步骤二:reset DMA Stream register: /* Reset DMA Stream registers (for debug purpose) */ DMA_DeInit(DMA_STREAM); 步骤三: /* Check if the DMA Stream is disab
[单片机]
<font color='red'>STM32</font> DMA->内存到内存
怎样在Linux上开发STM32程序
步骤1:下载所需的一切 您需要下载三个部分才能正常工作: 用于ARM的GCC编译器 STM32固件文件 St-link实用程序 Sample Project 编译器是将我们的C代码和所有其他库文件编译成stm32控制器可以理解的机器语言的主要软件。下载此编译器的最新预编译版本。 包含STM32固件的文件夹是保存主处理器运行所需的所有启动文件和核心文件的文件夹。我们将使用HAL已超越的标准外围设备库。我更喜欢StPeriphLibrary,因为使用该处理器的公司都在使用它们,因为它功能强大,更老旧并且受支持。它也更坚固。它不会减少初始化外围设备或打开LED所需的工作,但是会迫使您学习这些处理器的工作方式。这样一来,您将对内部工作
[单片机]
怎样在Linux上开发<font color='red'>STM32</font>程序
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved