Uboot在S3C2440上的移植详解(五)

发布者:legend9最新更新时间:2016-06-14 来源: eefocus关键字:Uboot在  S3C2440  移植详解 手机看文章 扫描二维码
随时随地手机看文章
一、移植环境
  • 主 机:VMWare--Fedora 9

  • 开发板:Mini2440--64MB Nand,Kernel:2.6.30.4

  • 编译器:arm-linux-gcc-4.3.2.tgz

  • u-boot:u-boot-2009.08.tar.bz2

二、移植步骤

9)实现u-boot对yaffs/yaffs2文件系统下载的支持。
注意:此篇对Nand的操作是基于MTD架构方式,在“u-boot-2009.08在2440上的移植详解(三)”中讲到过。
通常一个Nnad Flash存储设备由若干块组成,1个块由若干页组成。一般128MB以下容量的Nand Flash芯片,一页大小为528B,被依次分为2个256B的主数据区和16B的额外空间;128MB以上容量的Nand Flash芯片,一页大小通常为2KB。由于Nand Flash出现位反转的概率较大,一般在读写时需要使用ECC进行错误检验和恢复。
Yaffs/yaffs2文件系统的设计充分考虑到Nand Flash以页为存取单位等的特点,将文件组织成固定大小的段(Chunk)。以528B的页为例,Yaffs/yaffs2文件系统使用前512B存储数据和16B的额外空间存放数据的ECC和文件系统的组织信息等(称为OOB数据)。通过OOB数据,不但能实现错误检测和坏块处理,同时还可以避免加载时对整个存储介质的扫描,加快了文件系统的加载速度。以下是Yaffs/yaffs2文件系统页的结构说明:

 

Yaffs页结构说明
==============================================
字节 用途
==============================================
0 - 511 存储数据(分为两个半部)
512 - 515 系统信息
516 数据状态字
517 块状态字
518 - 519 系统信息
520 - 522 后半部256字节的ECC
523 - 524 系统信息
525 - 527 前半部256字节的ECC
==============================================


好了,在了解Nand Flash组成和Yaffs/yaffs2文件系统结构后,我们再回到u-boot中。目前,在u-boot中已经有对Cramfs、Jffs2等文件系统的读写支持,但与带有数据校验等功能的OOB区的Yaffs/Yaffs2文件系统相比,他们是将所有文件数据简单的以线性表形式组织的。所以,我们只要在此基础上通过修改u-boot的Nand Flash读写命令,增加处理00B区域数据的功能,即可以实现对Yaffs/Yaffs2文件系统的读写支持。
实现对Yaffs或者Yaffs2文件系统的读写支持步骤如下:
①、在include/configs/my2440.h头文件中定义一个管理对Yaffs2支持的宏和开启u-boot中对Nand Flash默认分区的宏,如下:

#gedit include/configs/my2440.h //添加到文件末尾即可

#define CONFIG_MTD_NAND_YAFFS2 1//定义一个管理对Yaffs2支持的宏

//开启Nand Flash默认分区,注意此处的分区要和你的内核中的分区保持一致
#define MTDIDS_DEFAULT "nand0=nandflash0"
#define MTDPARTS_DEFAULT "mtdparts=nandflash0:192k(bootloader)," \
"64k(params)," \
"2m(kernel)," \
"-(root)"

②、在原来对Nand操作的命令集列表中添加Yaffs2对Nand的写命令,如下:

接着,在该文件中对nand操作的do_nand函数中添加yaffs2对nand的操作,如下:

if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0)
{
int read;

if (argc < 4)
goto usage;

addr = (ulong)simple_strtoul(argv[2], NULL, 16);

read = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */
printf("\nNAND %s: ", read ? "read" : "write");
if (arg_off_size(argc - 3, argv + 3, nand, &off, &size) != 0)
return 1;

s = strchr(cmd, '.');
if (!s || !strcmp(s, ".jffs2") || !strcmp(s, ".e") || !strcmp(s, ".i"))
{
if (read)
ret = nand_read_skip_bad(nand, off, &size, (u_char *)addr);
else
ret = nand_write_skip_bad(nand, off, &size, (u_char *)addr);
}

//添加yaffs2相关操作,注意该处又关联到nand_write_skip_bad函数

#if defined(CONFIG_MTD_NAND_YAFFS2)
else if (s != NULL && (!strcmp(s, ".yaffs2")))
{
nand->rw_oob = 1;
nand->skipfirstblk = 1;
ret = nand_write_skip_bad(nand,off,&size,(u_char *)addr);
nand->skipfirstblk = 0;
nand->rw_oob = 0;
}
#endif

else if (!strcmp(s, ".oob"))
{
/* out-of-band data */
mtd_oob_ops_t ops =
{
.oobbuf = (u8 *)addr,
.ooblen = size,
.mode = MTD_OOB_RAW
};

if (read)
ret = nand->read_oob(nand, off, &ops);
else
ret = nand->write_oob(nand, off, &ops);
}
else
{
printf("Unknown nand command suffix '%s'.\n", s);
return 1;
}

printf(" %zu bytes %s: %s\n", size, read ? "read" : "written", ret ? "ERROR" : "OK");

return ret == 0 ? 0 : 1;
}

③、在include/linux/mtd/mtd.h头文件的mtd_info结构体中添加上面用到rw_oob和skipfirstblk数据成员,如下:

#gedit include/linux/mtd/mtd.h //在mtd_info结构体中添加

#if defined(CONFIG_MTD_NAND_YAFFS2)
u_char rw_oob;
u_char skipfirstblk;
#endif

④、在第二步关联的nand_write_skip_bad函数中添加对Nand OOB的相关操作,如下:

#gedit drivers/mtd/nand/nand_util.c //在nand_write_skip_bad函数中添加

int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, u_char *buffer)
{
int rval;
size_t left_to_write = *length;
size_t len_incl_bad;
u_char *p_buffer = buffer;

#if defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support
if(nand->rw_oob==1) 
{
size_t oobsize = nand->oobsize;
size_t datasize = nand->writesize;
int datapages = 0;

if (((*length)%(nand->oobsize+nand->writesize)) != 0)
{
printf ("Attempt to write error length data!\n");
return -EINVAL;
}

datapages = *length/(datasize+oobsize);
*length = datapages*datasize;
left_to_write = *length;
}
#endif

/* Reject writes, which are not page aligned */
if ((offset & (nand->writesize - 1)) != 0 ||
(*length & (nand->writesize - 1)) != 0) {
printf ("Attempt to write non page aligned data\n");
return -EINVAL;
}

len_incl_bad = get_len_incl_bad (nand, offset, *length);

if ((offset + len_incl_bad) >= nand->size) {
printf ("Attempt to write outside the flash area\n");
return -EINVAL;
}

#if !defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support
if (len_incl_bad == *length) {
rval = nand_write (nand, offset, length, buffer);
if (rval != 0)
printf ("NAND write to offset %llx failed %d\n",
offset, rval);

return rval;
}
#endif

while (left_to_write > 0) {
size_t block_offset = offset & (nand->erasesize - 1);
size_t write_size;

WATCHDOG_RESET ();

if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
printf ("Skip bad block 0x%08llx\n",
offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}

#if defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support
if(nand->skipfirstblk==1) 
{
nand->skipfirstblk=0;
printf ("Skip the first good block %llx\n", offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}
#endif

if (left_to_write < (nand->erasesize - block_offset))
write_size = left_to_write;
else
write_size = nand->erasesize - block_offset;

printf("\rWriting at 0x%llx -- ",offset);//add yaffs2 file system support

rval = nand_write (nand, offset, &write_size, p_buffer);
if (rval != 0) {
printf ("NAND write to offset %llx failed %d\n",
offset, rval);
*length -= left_to_write;
return rval;
}

left_to_write -= write_size;
printf("%d%% is complete.",100-(left_to_write/(*length/100)));
offset += write_size;

#if defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support
if(nand->rw_oob==1) 
{
p_buffer += write_size+(write_size/nand->writesize*nand->oobsize);
}
else 
{
p_buffer += write_size;
}
#else
p_buffer += write_size;
#endif

}

return 0;
}

⑤、在第四步nand_write_skip_bad函数中我们看到又对nand_write函数进行了访问,所以这一步是到nand_write函数中添加对yaffs2的支持,如下:

#gedit drivers/mtd/nand/nand_base.c //在nand_write函数中添加

static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
int ret;

#if defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support

int oldopsmode = 0;

if(mtd->rw_oob==1) 
{
int i = 0;
int datapages = 0;

size_t oobsize = mtd->oobsize;
size_t datasize = mtd->writesize;

uint8_t oobtemp[oobsize];
datapages = len / (datasize);

for(i = 0; i < (datapages); i++) 
{
memcpy((void *)oobtemp, (void *)(buf + datasize * (i + 1)), oobsize);
memmove((void *)(buf + datasize * (i + 1)), (void *)(buf + datasize * (i + 1) + oobsize), (datapages - (i + 1)) * (datasize) + (datapages - 1) * oobsize);
memcpy((void *)(buf+(datapages) * (datasize + oobsize) - oobsize), (void *)(oobtemp), oobsize);
}
}
#endif

/* Do not allow reads past end of device */
if ((to + len) > mtd->size)
return -EINVAL;
if (!len)
return 0;

nand_get_device(chip, mtd, FL_WRITING);

chip->ops.len = len;
chip->ops.datbuf = (uint8_t *)buf;

#if defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support

if(mtd->rw_oob!=1) 
{
chip->ops.oobbuf = NULL;
}
else 
{
chip->ops.oobbuf = (uint8_t *)(buf + len);
chip->ops.ooblen = mtd->oobsize;
oldopsmode = chip->ops.mode;
chip->ops.mode = MTD_OOB_RAW;
}
#else
chip->ops.oobbuf = NULL;
#endif

ret = nand_do_write_ops(mtd, to, &chip->ops);

*retlen = chip->ops.retlen;

nand_release_device(mtd);

#if defined(CONFIG_MTD_NAND_YAFFS2) //add yaffs2 file system support

chip->ops.mode = oldopsmode;
#endif

return ret;
}

OK,对yaffs2支持的代码已修改完毕,重新编译u-boot并下载到nand中,启动开发板,在u-boot的命令行输入:nand help查看nand的命令,可以看到多了一个nand write[.yaffs2]的命令,这个就是用来下载yaffs2文件系统到nand中的命令了。

⑥、使用nand write[.yaffs2]命令把事前制作好的yaffs2文件系统下载到Nand Flash中(yaffs2文件系统的制作请参考:Linux-2.6.30.4在2440上的移植之文件系统),下载操作步骤和效果图如下:



    		    Uboot在S3C2440上的移植详解(五)

⑦、结合u-boot和内核来测试启动下载的yaffs2文件系统
设置u-boot启动参数bootargs,注意:这一长串参数要与内核配置里面的Boot options-->Default kernel command string的设置要一致。特别是mtdblock3要根据内核具体的分区来设,在上一篇中讲到了内核中Nand的分区情况,u-boot属于mtdblock0,param属于mtdblock1,kernel属于mtdblock2,root就属于mtdblock3,所以这里要设置成root=/dev/mtdblock3,否则文件系统无法启动成功,会出现一些什么I/O之类的错误



    		    Uboot在S3C2440上的移植详解(五)

好了,最后重启开发板,内核引导成功,yaffs2文件系统也挂载成功,效果图如下:



    		    Uboot在S3C2440上的移植详解(五)

tftp 0x30000000 root-2.6.30.4.bin //用tftp将yaffs2文件系统下载到内存的0x30000000位置

nand erase 0x250000 0x3dac000 //擦除Nand的文件系统分区

nand write.yaffs2 0x30000000 0x250000 0x658170 //将内存中的yaffs2文件系统写入Nand的文件系统分区,注意这里的0x658170是yaffs2文件系统的实际大小(可以在tftp传送完后可以看到),要写正确,否则会形成假坏块

#gedit common/cmd_nand.c //在U_BOOT_CMD中添加

U_BOOT_CMD(nand, CONFIG_SYS_MAXARGS, 1, do_nand,
"NAND sub-system",
"info - show available NAND devices\n"
"nand device [dev] - show or set current device\n"
"nand read - addr off|partition size\n"
"nand write - addr off|partition size\n"
" read/write 'size' bytes starting at offset 'off'\n"
" to/from memory address 'addr', skipping bad blocks.\n"

//注意:这里只添加了yaffs2的写命令,因为我们只用u-boot下载(即写)功能,所以我们没有添加yaffs2读的命令
#if defined(CONFIG_MTD_NAND_YAFFS2)
"nand write[.yaffs2] - addr off|partition size - write `size' byte yaffs image\n"
" starting at offset off' from memory address addr' (.yaffs2 for 512+16 NAND)\n"
#endif

"nand erase [clean] [off size] - erase 'size' bytes from\n"
" offset 'off' (entire device if not specified)\n"
"nand bad - show bad blocks\n"
"nand dump[.oob] off - dump page\n"
"nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
"nand markbad off [...] - mark bad block(s) at offset (UNSAFE)\n"
"nand biterr off - make a bit error at offset (UNSAFE)"
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
"\n"
"nand lock [tight] [status]\n"
" bring nand to lock state or display locked pages\n"
"nand unlock [offset] [size] - unlock section"
#endif
);


关键字:Uboot在  S3C2440  移植详解 引用地址:Uboot在S3C2440上的移植详解(五)

上一篇:Uboot在S3C2440上的移植详解(六)
下一篇:Uboot在S3C2440上的移植详解(四)

推荐阅读最新更新时间:2024-03-16 14:57

基于嵌入式CPU S3C2440的VGA显示系统设计
   目前很多 SOC 厂商的微处理器芯片都集成了LCD控制器,如三星公司的S3C2410.S3C2440,Intel的Xscale系列等。大多数 嵌入式系统 也采用流行的LCD显示技术。但是在需要大屏幕显示、对分辨率要求不高的场合,如车间、厂房,采用大屏幕LCD则成本过高。另一方面,VGA显示技术因为技术发展成熟,成本低廉,仍在被大量使用,直到今天它仍是所有显示终端最为成熟的标准接口。如果让嵌入式处理器直接支持VGA显示器,则能很大地利用现有资源,节约系统成本。   1 基于S3C2440的VGA显示技术分析   通过分析VGA显示技术的时序逻辑与S3C2440内部集成LCD控制器驱动TFT LCD的时序逻辑,找出它们的共同
[电源管理]
基于嵌入式CPU <font color='red'>S3C2440</font>的VGA显示系统设计
新版U-boot2012.04.01移植(一)(JZ2440-S3C2440)
新版U-boot2012.04.01移植(一)(JZ2440-S3C2440) u-boot下载地址:http://www.denx.de/wiki/U-Boot/ 我们这里要下载的u-boot版本为:u-boot-2012.04.01tar.bz2 下载步骤如下: 下载完成后,在linux下进行试验: 1、初试 进行解压缩:tar xjf u-boot-2012.04.01.tar.bz2 进入目录: cd u-boot-2012.04.01/ cd u-boot-2012.04.01/ 进行配置: make smdk2410_config 编译: make 最后会出现编译错误:“arm
[单片机]
新版U-boot2012.04.01<font color='red'>移植</font>(一)(JZ2440-S3C2440)
S3C2440快速启动的实现描述
S3C2440 是三星公司基于 ARM920T 设计的一款处理器,在开发基于S3C2440 的系统的过程中,如何让系统快速稳定地启动是一个重要问题。嵌入式系统的资源有限,程序通常都是固化在 ROM 中运行。但在实际应用中,为提高系统的实时性,加快代码的执行速度,系统启动后程序往往要被搬移到 RAM 中,因为 RAM 的存取速度要比 ROM 快得多,这样大大提升系统的性能。启动程序要完成的任务包括:硬件初始化,系统存储系统的配置,复制二级中断向量表。 启动程序过程 系统硬件初始化 系统上电或复位后,程序从位于地址 0x0 的 Reset Exception Vector 处开始执行,因此需要在这里放置 Bootloader 的第一
[单片机]
S3C2440裸机------LCD_框架与准备
1.框架 2.准备工作 我们需要准备一个支持norfalsh和nandflash启动的程序,当我们的程序小于4K时,我们可以把nandflash的程序拷贝到片内4K内存,但是现在我们的程序大于4K,这时候我们要把程序拷贝到SDRAM里面。
[单片机]
<font color='red'>S3C2440</font>裸机------LCD_框架与准备
基于S3C2440的嵌入式Linux根文件系统构建
嵌入式Linux早已成为IT界家喻户晓的一个名字,使用Linux进行嵌入式产品开发有一个很大的优势,就是开发资源丰富,且成本低廉,嵌入式Linux操作系统越来越受到重视,其应用也越来越广泛。而文件系统作为操作系统的重要组成部分,用于控制对数据文件及设备的存取,提供对文件和目录的分层组织形式,数据缓冲以及对文件存取权限的控制。根文件系统一直是Linux系统不可或缺的组件,在嵌入式Lin-ux中,内核在启动期间进行的最后操作之一就是安装根文件系统。Busybox是构建嵌入式Linux根文件系统的软件,用它制作根文件系统简单、方便,而且设置灵活。 1 根文件 Linux要在一个分区上存放系统启动所必需的文件,如内核映像文件、内
[单片机]
基于<font color='red'>S3C2440</font>的嵌入式Linux根文件系统构建
S3C2440移植uboot之支持NAND启动
上一节S3C2440移植uboot之新建单板_时钟_SDRAM_串口移植uboot初始化了时钟,配置了支持串口,这一节我们继续修改uboot支持NAND启动。 目录 1.去掉 -pie 选项 2.修改之前的init.c 3.修改start.s重定位部分 4.修改链接脚本 5.报错修改 6.重新修改链接地址 1.去掉 -pie 选项   参考之前uboot使用的start.S, init.c来修改uboot代码新的uboot链接地址位于0,且在arm-linux-ld时加了 -pie 选项, 使得u-boot.bin里多了 *(.rel*) , *(.dynsym) ,从而程序非常大,不利于从NAND启动(重定位之前的
[单片机]
<font color='red'>S3C2440</font><font color='red'>移植</font><font color='red'>uboot</font>之支持NAND启动
11-S3C2440驱动学习(五)嵌入式linux-网络设备驱动(二)移植DM9000C网卡驱动程序
我们实现了一个虚拟网卡驱动程序,现在我们针对真实的网卡芯片DM9000C,编写移植DM9000C网卡驱动程序。 一、移植分析 协议类的驱动,我们的主要工作往往是将现有的驱动和我们的硬件所匹配起来。协议类的函数往往已经成型不需要我们去修改和编写。比如发包函数:hard_start_xmit函数和netif_rx上报函数都不需要我们编写。网络驱动是针对很多硬件编写出来的,我们使用的是什么硬件CPU,比如ARM9,以及我们使用的系统版本。我们只需要修改驱动,告诉驱动现在的硬件情况是怎么样的,基地址是多少,中断引脚是哪个、设置下内存管理器以满足时序等等。这也是网络驱动移植的简单之处。 (1)DM9000C 一般一款网卡芯片,出
[单片机]
11-S3C2440驱动学习(五)嵌入式linux-网络设备驱动(二)<font color='red'>移植</font>DM9000C网卡驱动程序
S3C2440裸机------时钟
1.S3C2440的时钟体系 1.1.S3C2440结构框图 从上面的结构图可以看出,S3C2440主要分为CPU,高速总线,低速总线。其中 CPU工作与FCLK AHB总线工作于HCLK,AHB(Advance High performance Bus)总线主要用于高性能模块。 慢速外设工作于PCLK,APB(Advance Peripheral Bus)总线主要用于低贷款的周边外设之间的连接。 我们的S3C2440硬件电路板上,时钟源是一个12M的晶振,我们用PLL锁相环可以得到上面的三种频率。 1.2 S3C2440时钟树 从上图的左上角可以看出,时钟源有两个选择,可以是晶振,也可以是直接从EX
[单片机]
<font color='red'>S3C2440</font>裸机------时钟
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved