内核版本:Linux 2.6.28
主机平台:Ubuntu 11.04
内核版本:Linux 2.6.39
交叉编译器版本:arm-linux-gcc 3.4.1
原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/6584285
1、实时时钟概述
实时时钟(RTC)单元可以在断电的情况下使用纽扣电池继续计时工作。RTC使用STRB/LDRB ARM操作传输二进制码十进制数的8位数据给CPU。其中的数据包括秒、分、时、日期、天、月、年的时间信息。可以执行报警功能。
2、实时时钟操作
下面是RTC模块的电路图
3、RTC寄存器介绍
实时时钟控制寄存器(RTCCON)-REAL TIME CLOCK CONTROL REGISTER
节拍时间计数寄存器(TICNT)-TICK TIME COUNT REGISTER
RTC报警控制寄存器(RTCALM)-RTC ALARM CONTROL REGISTER
报警秒数寄存器(ALMSEC)-ALARM SECOND DATA REGISTER
报警分钟计数寄存器(ALMMIN)-ALARM MIN DATA REGISTER
报警小时数据寄存器(ALMHOUR)-ALARM HOUR DATA REGISTER
报警日期数据寄存器(ALMDATE)-ALARM DATE DATA REGISTER
报警月数数据寄存器(ALMMON)-ALARM MON DATA REGISTER
报警年数数据寄存器(ALMYEAR)-ALARM YEAR DATA REGISTER
BCD数据寄存器的格式和报警寄存器结构相同,只是对应的地址不同。
BCD秒寄存器(BCDSEC)-BCD SECOND REGISTER 地址:0x57000070(L) 0x57000073(B)
BCD分寄存器(BCDMIN)-BCD MINUTE REGISTER 地址:0x57000074(L) 0x57000077(B)
BCD小时寄存器(BCDHOUR)-BCD HOUR REGISTER 地址:0x57000078(L) 0x5700007B(B)
BCD日期寄存器(BCDDATE)-BCD DATE REGISTER 地址:0x5700007C(L) 0x5700007F(B)
BCD日寄存器(BCDDAY)-BCD DAY REGISTER 地址:0x57000080(L) 0x57000083(B)
BCD月寄存器(BCDMON)-BCD MONTH REGISTER 地址:0x57000084(L) 0x57000087(B)
BCD年寄存器(BCDYEAR)-BCD YEAR REGISTER 地址:0x57000088(L) 0x5700008B(B)
4、驱动实例分析
为了使驱动更容易理解,现在这个RTC驱动只完成了计时功能,没有添加相应的报警功能,也没有添加电源管理的功能,缺少的功能今后完善。
下面先总体了解驱动:
首先是RTC驱动的结构体,在/include/linux/platform_device.h中,如下
struct platform_driver { int (*probe)(struct platform_device *); int (*remove)(struct platform_device *); void (*shutdown)(struct platform_device *); int (*suspend)(struct platform_device *, pm_message_t state); int (*suspend_late)(struct platform_device *, pm_message_t state); int (*resume_early)(struct platform_device *); int (*resume)(struct platform_device *); struct pm_ext_ops *pm; struct device_driver driver; };驱动中定义对应的结构体
static struct platform_driver s3c2410_rtc_driver = { .probe = s3c_rtc_probe,//RTC探测函数 .remove = __devexit_p(s3c_rtc_remove),//RTC移除函数 .driver = { .name = "s3c2410-rtc", .owner = THIS_MODULE, }, };下面是驱动中驱动的初始化和退出函数
static int __init s3c_rtc_init(void) { printk(banner); return platform_driver_register(&s3c2410_rtc_driver); } static void __exit s3c_rtc_exit(void) { platform_driver_unregister(&s3c2410_rtc_driver); }
platform_driver_register()和platform_driver_unregister()函数在/drivers/base/platform.c中实现的。
可以看出,platform_driver_register()函数的作用就是为platform_driver中的driver中的probe、remove等提供接口函数
int platform_driver_register(struct platform_driver *drv) { drv->driver.bus = &platform_bus_type; if (drv->probe) drv->driver.probe = platform_drv_probe; if (drv->remove) drv->driver.remove = platform_drv_remove; if (drv->shutdown) drv->driver.shutdown = platform_drv_shutdown; if (drv->suspend) drv->driver.suspend = platform_drv_suspend; if (drv->resume) drv->driver.resume = platform_drv_resume; if (drv->pm) drv->driver.pm = &drv->pm->base; return driver_register(&drv->driver);//注册老的驱动 }
void platform_driver_unregister(struct platform_driver *drv) { driver_unregister(&drv->driver); }
接下来是RTC平台驱动探测函数s3c_rtc_probe,下面函数定义的时候使用了__devinit的作用是使编译器优化代码,将其放在和是的内存位置,减少内存占用和提高内核效率。
probe函数接收到plarform_device这个参数后,就需要从中提取出需要的信息。它一般会通过调用内核提供的platform_get_resource和platform_get_irq等函数来获得相关信息。如通过platform_get_resource获得设备的起始地址后,可以对其进行request_mem_region和ioremap等操作,以便应用程序对其进行操作。通过platform_get_irq得到设备的中断号以后,就可以调用request_irq函数来向系统申请中断。这些操作在设备驱动程序中一般都要完成。
static int __devinit s3c_rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc;//定义rtc_device结构体,定义在/include/linux/rtc.h struct resource *res;//定义资源结构体,定义在/include/linux/ioport.h int ret; pr_debug("%s: probe=%p\n", __func__, pdev); /* find the IRQs */ s3c_rtc_tickno = platform_get_irq(pdev, 1);//在系统定义的平台设备中获取中断号 if (s3c_rtc_tickno < 0) {//异常处理 dev_err(&pdev->dev, "no irq for rtc tick\n"); return -ENOENT; } /* get the memory region */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);//获取RTC平台使用的IO资源 if (res == NULL) { dev_err(&pdev->dev, "failed to get memory region resource\n"); return -ENOENT; } //申请内存区域,res是struct resource类型,见本函数后面 s3c_rtc_mem = request_mem_region(res->start, res->end-res->start+1, pdev->name); if (s3c_rtc_mem == NULL) {//申请内存出错 dev_err(&pdev->dev, "failed to reserve memory region\n"); ret = -ENOENT; goto err_nores; } //将寄存器地址映射成虚拟地址,以便访问 s3c_rtc_base = ioremap(res->start, res->end - res->start + 1); if (s3c_rtc_base == NULL) { dev_err(&pdev->dev, "failed ioremap()\n"); ret = -EINVAL; goto err_nomap; } /* check to see if everything is setup correctly */ s3c_rtc_enable(pdev, 1);//对RTCCON寄存器设置,详情见下面的函数实现 pr_debug("s3c2410_rtc: RTCCON=%02x\n", readb(s3c_rtc_base + S3C2410_RTCCON)); s3c_rtc_setfreq(&pdev->dev, 1);//详情见下面的函数实现 /* register RTC and exit */ rtc = rtc_device_register("s3c", &pdev->dev, &s3c_rtcops, THIS_MODULE);//注册RTC为RTC设备,其中s3c_rtcops定义见下 if (IS_ERR(rtc)) { dev_err(&pdev->dev, "cannot attach rtc\n"); ret = PTR_ERR(rtc); goto err_nortc; } rtc->max_user_freq = 128;//设置RTC节拍时间计数寄存器TICNT的节拍时间计数值的用户最大相对值 //将RTC类的设备数据传递给系统设备,在/include/linux/platform_device.h中
//#define platform_set_drvdata(_dev,data) dev_set_drvdata(&(_dev)->dev, (data)),该函数在/include/linux/device.h中定义,见本函数下面
platform_set_drvdata(pdev, rtc);
return 0;
//异常处理 err_nortc: s3c_rtc_enable(pdev, 0); iounmap(s3c_rtc_base); err_nomap: release_resource(s3c_rtc_mem); err_nores: return ret; }下面是/include/linux/ioport.h中struct resource结构体定义
struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; struct resource *parent, *sibling, *child; };这是dev_set_drvdata()的函数定义:
static inline void dev_set_drvdata(struct device *dev, void *data) { dev->driver_data = data; }接下来是在s3c_rtc_probe()函数用到的两个函数s3c_rtc_enable()和s3c_rtc_setfreq()
static void s3c_rtc_enable(struct platform_device *pdev, int en) {
void __iomem *base = s3c_rtc_base;//__iomem的作用就是为了使编译器更好的优化编译 unsigned int tmp; if (s3c_rtc_base == NULL) return; //en作为参数传递过来如果en==0,关闭电源前的情况 if (!en) { tmp = readb(base + S3C2410_RTCCON);
writeb(tmp & ~S3C2410_RTCCON_RTCEN, base + S3C2410_RTCCON);//设置RTCCON寄存器,屏蔽RTC使能,可以参考数据手册中寄存器的相关定义 tmp = readb(base + S3C2410_TICNT); writeb(tmp & ~S3C2410_TICNT_ENABLE, base + S3C2410_TICNT);//设置TICNT寄存器,屏蔽节拍时间中断使能 } else { /* re-enable the device, and check it is ok */ //en!=0的情况,表示系统复位,重新使能RTC驱动 if ((readb(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0){//RTCCON第0位为0,将其设置为1,重新使能 dev_info(&pdev->dev, "rtc disabled, re-enabling\n"); tmp = readb(base + S3C2410_RTCCON); writeb(tmp|S3C2410_RTCCON_RTCEN, base+S3C2410_RTCCON); } if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)){ dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n"); tmp = readb(base + S3C2410_RTCCON); writeb(tmp& ~S3C2410_RTCCON_CNTSEL, base+S3C2410_RTCCON);//设置RTCCON第2位为0,设置BCD计数为混合BCD计数 } if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)){ dev_info(&pdev->dev, "removing RTCCON_CLKRST\n"); tmp = readb(base + S3C2410_RTCCON); writeb(tmp & ~S3C2410_RTCCON_CLKRST, base+S3C2410_RTCCON);//RTC时钟计数器复位 } } }
static int s3c_rtc_setfreq(struct device *dev, int freq)//设定节拍时间计数值 { unsigned int tmp; spin_lock_irq(&s3c_rtc_pie_lock);//获取自旋锁,对资源互斥访问 tmp = readb(s3c_rtc_base + S3C2410_TICNT) & S3C2410_TICNT_ENABLE;//节拍时间使能有效 tmp |= (128 / freq)-1; writeb(tmp, s3c_rtc_base + S3C2410_TICNT); spin_unlock_irq(&s3c_rtc_pie_lock);//解锁 return 0; }接下来是RTC设备类的操作。
下面是rtc_class_ops是RTC设备类在RTC驱动核心部分中定义的对RTC设备类进行操作的结构体,类似字符设备在驱动中的file_operations对字符设备进行操作的意思。该结构体被定义 在rtc.h中,对RTC的操作主要有打开、关闭、设置或获取时间、设置或获取报警、设置节拍时间计数值等等,该结构体内接口函数的实现都在下面
static const struct rtc_class_ops s3c_rtcops = { .open = s3c_rtc_open, .release = s3c_rtc_release, .read_time = s3c_rtc_gettime, .set_time = s3c_rtc_settime, .irq_set_freq = s3c_rtc_setfreq, .irq_set_state = s3c_rtc_setpie, };RTC打开设备函数s3c_rtc_open()
static int s3c_rtc_open(struct device *dev) { struct platform_device *pdev = to_platform_device(dev);//从平台设备中获取RTC设备类的数据 struct rtc_device *rtc_dev = platform_get_drvdata(pdev); int ret; ret = request_irq(s3c_rtc_tickno, s3c_rtc_tickirq, IRQF_DISABLED, "s3c2410-rtc tick", rtc_dev);//申请中断 if (ret) { dev_err(dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret); goto tick_err; } tick_err: return ret; }RTC TICK节拍时间中断服务程序
static irqreturn_t s3c_rtc_tickirq(int irq, void *id) { struct rtc_device *rdev = id; rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF); return IRQ_HANDLED; }RTC关闭设备函数s3c_rtc_release()
static void s3c_rtc_release(struct device *dev) { struct platform_device *pdev = to_platform_device(dev);//从平台设备中获取RTC设备类的数据 struct rtc_device *rtc_dev = platform_get_drvdata(pdev); /* do not clear AIE here, it may be needed for wake */ s3c_rtc_setpie(dev, 0);//函数定义见下面 free_irq(s3c_rtc_tickno, rtc_dev); }s3c_rtc_setpie()函数,该函数主要作用就是根据参数设置TICNT寄存器的最高位,参数为0,禁止使能,参数为1,使能
static int s3c_rtc_setpie(struct device *dev, int enabled) { unsigned int tmp; pr_debug("%s: pie=%d\n", __func__, enabled); spin_lock_irq(&s3c_rtc_pie_lock); tmp = readb(s3c_rtc_base + S3C2410_TICNT) & ~S3C2410_TICNT_ENABLE;//读取TICNT的值并将最高位清0 if (enabled) tmp |= S3C2410_TICNT_ENABLE; writeb(tmp, s3c_rtc_base + S3C2410_TICNT);//写入计算后新的值 spin_unlock_irq(&s3c_rtc_pie_lock); return 0; }下面两个函数是设置和读取BCD寄存器的时间,逻辑很简单,只是读取和设置相应寄存器的值
static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) { unsigned int have_retried = 0; void __iomem *base = s3c_rtc_base; retry_get_time: rtc_tm->tm_min = readb(base + S3C2410_RTCMIN); rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR); rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE); rtc_tm->tm_mon = readb(base + S3C2410_RTCMON); rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR); rtc_tm->tm_sec = readb(base + S3C2410_RTCSEC); /* the only way to work out wether the system was mid-update * when we read it is to check the second counter, and if it * is zero, then we re-try the entire read */ if (rtc_tm->tm_sec == 0 && !have_retried) { have_retried = 1; goto retry_get_time; } pr_debug("read time %02x.%02x.%02x %02x/%02x/%02x\n", rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday, rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec); rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec); rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min); rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour); rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday); rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon); rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year); rtc_tm->tm_year += 100; rtc_tm->tm_mon -= 1; return 0; } static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm) { void __iomem *base = s3c_rtc_base; int year = tm->tm_year - 100; pr_debug("set time %02d.%02d.%02d %02d/%02d/%02d\n", tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); /* we get around y2k by simply not supporting it */ if (year < 0 || year >= 100) { dev_err(dev, "rtc only supports 100 years\n"); return -EINVAL; } writeb(bin2bcd(tm->tm_sec), base + S3C2410_RTCSEC); writeb(bin2bcd(tm->tm_min), base + S3C2410_RTCMIN); writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR); writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE); writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON); writeb(bin2bcd(year), base + S3C2410_RTCYEAR); return 0; }到这里RTC驱动的计时功能实现,报警功能还没有完成。下面是这个驱动源代码
#include#include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct resource *s3c_rtc_mem; static void __iomem *s3c_rtc_base; static int s3c_rtc_tickno = NO_IRQ; static DEFINE_SPINLOCK(s3c_rtc_pie_lock); static irqreturn_t s3c_rtc_tickirq(int irq, void *id) { struct rtc_device *rdev = id; rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF); return IRQ_HANDLED; } /* Update control registers */ static void s3c_rtc_setaie(int to) { unsigned int tmp; pr_debug("%s: aie=%d\n", __func__, to); tmp = readb(s3c_rtc_base + S3C2410_RTCALM) & ~S3C2410_RTCALM_ALMEN; if (to) tmp |= S3C2410_RTCALM_ALMEN; writeb(tmp, s3c_rtc_base + S3C2410_RTCALM); } static int s3c_rtc_setpie(struct device *dev, int enabled) { unsigned int tmp; pr_debug("%s: pie=%d\n", __func__, enabled); spin_lock_irq(&s3c_rtc_pie_lock); tmp = readb(s3c_rtc_base + S3C2410_TICNT) & ~S3C2410_TICNT_ENABLE; if (enabled) tmp |= S3C2410_TICNT_ENABLE; writeb(tmp, s3c_rtc_base + S3C2410_TICNT); spin_unlock_irq(&s3c_rtc_pie_lock); return 0; } static int s3c_rtc_setfreq(struct device *dev, int freq) { unsigned int tmp; spin_lock_irq(&s3c_rtc_pie_lock); tmp = readb(s3c_rtc_base + S3C2410_TICNT) & S3C2410_TICNT_ENABLE; tmp |= (128 / freq)-1; writeb(tmp, s3c_rtc_base + S3C2410_TICNT); spin_unlock_irq(&s3c_rtc_pie_lock); return 0; } /* Time read/write */ static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) { unsigned int have_retried = 0; void __iomem *base = s3c_rtc_base; retry_get_time: rtc_tm->tm_min = readb(base + S3C2410_RTCMIN); rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR); rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE); rtc_tm->tm_mon = readb(base + S3C2410_RTCMON); rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR); rtc_tm->tm_sec = readb(base + S3C2410_RTCSEC); /* the only way to work out wether the system was mid-update * when we read it is to check the second counter, and if it * is zero, then we re-try the entire read */ if (rtc_tm->tm_sec == 0 && !have_retried) { have_retried = 1; goto retry_get_time; } pr_debug("read time %02x.%02x.%02x %02x/%02x/%02x\n", rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday, rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec); rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec); rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min); rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour); rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday); rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon); rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year); rtc_tm->tm_year += 100; rtc_tm->tm_mon -= 1; return 0; } static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm) { void __iomem *base = s3c_rtc_base; int year = tm->tm_year - 100; pr_debug("set time %02d.%02d.%02d %02d/%02d/%02d\n", tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); /* we get around y2k by simply not supporting it */ if (year < 0 || year >= 100) { dev_err(dev, "rtc only supports 100 years\n"); return -EINVAL; } writeb(bin2bcd(tm->tm_sec), base + S3C2410_RTCSEC); writeb(bin2bcd(tm->tm_min), base + S3C2410_RTCMIN); writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR); writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE); writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON); writeb(bin2bcd(year), base + S3C2410_RTCYEAR); return 0; } static int s3c_rtc_open(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct rtc_device *rtc_dev = platform_get_drvdata(pdev); int ret; ret = request_irq(s3c_rtc_tickno, s3c_rtc_tickirq, IRQF_DISABLED, "s3c2410-rtc tick", rtc_dev); if (ret) { dev_err(dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret); goto tick_err; } tick_err: return ret; } static void s3c_rtc_release(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct rtc_device *rtc_dev = platform_get_drvdata(pdev); /* do not clear AIE here, it may be needed for wake */ s3c_rtc_setpie(dev, 0); free_irq(s3c_rtc_tickno, rtc_dev); } static const struct rtc_class_ops s3c_rtcops = { .open = s3c_rtc_open, .release = s3c_rtc_release, .read_time = s3c_rtc_gettime, .set_time = s3c_rtc_settime, .irq_set_freq = s3c_rtc_setfreq, .irq_set_state = s3c_rtc_setpie, }; static void s3c_rtc_enable(struct platform_device *pdev, int en) { void __iomem *base = s3c_rtc_base; unsigned int tmp; if (s3c_rtc_base == NULL) return; if (!en) { tmp = readb(base + S3C2410_RTCCON); writeb(tmp & ~S3C2410_RTCCON_RTCEN, base + S3C2410_RTCCON); tmp = readb(base + S3C2410_TICNT); writeb(tmp & ~S3C2410_TICNT_ENABLE, base + S3C2410_TICNT); } else { /* re-enable the device, and check it is ok */ if ((readb(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0){ dev_info(&pdev->dev, "rtc disabled, re-enabling\n"); tmp = readb(base + S3C2410_RTCCON); writeb(tmp|S3C2410_RTCCON_RTCEN, base+S3C2410_RTCCON); } if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)){ dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n"); tmp = readb(base + S3C2410_RTCCON); writeb(tmp& ~S3C2410_RTCCON_CNTSEL, base+S3C2410_RTCCON); } if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)){ dev_info(&pdev->dev, "removing RTCCON_CLKRST\n"); tmp = readb(base + S3C2410_RTCCON); writeb(tmp & ~S3C2410_RTCCON_CLKRST, base+S3C2410_RTCCON); } } } static int __devexit s3c_rtc_remove(struct platform_device *dev) { struct rtc_device *rtc = platform_get_drvdata(dev); platform_set_drvdata(dev, NULL); rtc_device_unregister(rtc); s3c_rtc_setpie(&dev->dev, 0); s3c_rtc_setaie(0); iounmap(s3c_rtc_base); release_resource(s3c_rtc_mem); kfree(s3c_rtc_mem); return 0; } static int __devinit s3c_rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc; struct resource *res; int ret; pr_debug("%s: probe=%p\n", __func__, pdev); /* find the IRQs */ s3c_rtc_tickno = platform_get_irq(pdev, 1); if (s3c_rtc_tickno < 0) { dev_err(&pdev->dev, "no irq for rtc tick\n"); return -ENOENT; } /* get the memory region */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "failed to get memory region resource\n"); return -ENOENT; } s3c_rtc_mem = request_mem_region(res->start, res->end-res->start+1, pdev->name); if (s3c_rtc_mem == NULL) { dev_err(&pdev->dev, "failed to reserve memory region\n"); ret = -ENOENT; goto err_nores; } s3c_rtc_base = ioremap(res->start, res->end - res->start + 1); if (s3c_rtc_base == NULL) { dev_err(&pdev->dev, "failed ioremap()\n"); ret = -EINVAL; goto err_nomap; } /* check to see if everything is setup correctly */ s3c_rtc_enable(pdev, 1); pr_debug("s3c2410_rtc: RTCCON=%02x\n", readb(s3c_rtc_base + S3C2410_RTCCON)); s3c_rtc_setfreq(&pdev->dev, 1); /* register RTC and exit */ rtc = rtc_device_register("s3c", &pdev->dev, &s3c_rtcops, THIS_MODULE); if (IS_ERR(rtc)) { dev_err(&pdev->dev, "cannot attach rtc\n"); ret = PTR_ERR(rtc); goto err_nortc; } rtc->max_user_freq = 128; platform_set_drvdata(pdev, rtc); return 0; err_nortc: s3c_rtc_enable(pdev, 0); iounmap(s3c_rtc_base); err_nomap: release_resource(s3c_rtc_mem); err_nores: return ret; } static struct platform_driver s3c2410_rtc_driver = { .probe = s3c_rtc_probe, .remove = __devexit_p(s3c_rtc_remove), .driver = { .name = "s3c2410-rtc", .owner = THIS_MODULE, }, }; static char __initdata banner[] = "S3C24XX RTC, (c) 2004,2006 Simtec Electronics\n"; static int __init s3c_rtc_init(void) { printk(banner); return platform_driver_register(&s3c2410_rtc_driver); } static void __exit s3c_rtc_exit(void) { platform_driver_unregister(&s3c2410_rtc_driver); } module_init(s3c_rtc_init); module_exit(s3c_rtc_exit); MODULE_DESCRIPTION("My s3c2440 RTC Driver"); MODULE_AUTHOR("YanMing - yming0221@gmail.com"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:s3c2410-rtc");
Makefile文件
obj-m := rtc.o KERNELDIR ?= /arm/linux-2.6.28.7-2440 PWD := $(shell pwd) default: $(MAKE) -C $(KERNELDIR) M=$(PWD) modules clean: rm -f *.o *.ko *.order *.symvers
make后在目录下生成rtc.ko驱动,利用NFS挂在到目标板,insmod rtc.ko驱动就可以加载,执行hwclock命令,查看是否可以读取硬件的RTC。
上一篇:ARM寄存器地址定义
下一篇:STM32F4——RTC实时时钟
推荐阅读最新更新时间:2024-03-16 14:59