基于高性能全数字式正弦波逆变电源的设计方案

发布者:ph49635359最新更新时间:2016-09-19 来源: eefocus关键字:正弦波  逆变电源 手机看文章 扫描二维码
随时随地手机看文章
本文提出一种高性能全数字式正弦波逆变电源的设计方案。该方案分为前后两级,前级采用推挽升压电路将输入的直流电升压到350V左右的母线电压,后级采用全桥逆变电路,逆变桥输出经滤波器滤波后,用隔离变压器进行电压采样,电流互感器进行电流采样,以形成反馈环节,增加电源输出的稳定性。升压级PWM驱动及逆变级SPWM驱动均由STM32单片机产生,减小了硬件开支。基于上述方案试制的400W样机,具有输出短路保护、过流保护及输入过压保护、欠压保护功能,50Hz输出时频率偏差小于0.05Hz,满载(400W)效率高于87%,电压精度为220V±1%,THD小于1.5%.

  逆变电源应用广泛,特别是精密仪器对逆变电源的性能要求更高。高性能逆变电源不仅要求工作稳定、逆变效率高、输出波形特性好、保护功能齐全,还要求逆变电源小型化、智能化、并且具备可扩展性。文中提出一种基于STM32系列单片机STM32F103VE的纯数字式正弦逆变电源,该电源的全部功能由单片机控制实现,具有输出电压、频率稳定,效率高,保护功能齐全的特点。

  系统设计

  系统的整体框架如图1所示。系统采用高频逆变方案,即前级升压加后级逆变的结构,这样可以避免使用笨重的工频变压器,有效的降低了电源的体积、重量及成本,提升电源的效率。电路的工作原理是,12 V的直流输入电压经过滤波后由推挽升压和全桥整流升压到350 V的直流母线电压,再经过全桥逆变电路转变为220 V/50 Hz的工频交流电,采样电路对相应点进行采样,以实现闭环控制及保护功能。

  

 

  图1

  由于大电流条件下,功率管驱动信号占空比过小会导致发热严重,效率降低,故逆变电源的前级采用准开环的控制方式,即输入电压在一定范围内时,驱动信号占空比开到最大并保持不变,输入电压过高时,减小占空比,维持母线电压在一定范围内。这样做的好处是,可以使前级升压获得较高的效率。

  系统硬件设计

  逆变电源硬件结构如图2所示。主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器和点阵液晶构成。其中,直流升压部分将输入电压升高至输出正弦交流电的峰值以上的母线直流电压,正弦逆变部分将母线直流电压逆变后经输出滤波电路得到正弦式交流电,采样电路则对母线电压、母线电流、输出电压、输出电流、输入电压进行采样,以实现短路保护、过压欠压保护、过流保护、闭环稳压等功能。驱动电路的功能是将驱动信号的逻辑电平进行匹配放大,以满足驱动功率管的要求。控制电路的功能是产生驱动信号,并对采样信号进行处理,以实现复杂的系统功能。点阵液晶的功能是显示系统工作信息,如果输出电压、电流以及保护信息等。

  

 

  图2

  1)主控制器

  主控制器选用STM32F103VE增强型单片机,STM32系列单片机是意法半导体公司专门为高性能、低成本、低功耗的嵌入式应用设计的产品。此单片机采用哈佛结构,使处理器可以同时进行取址和数据读写操作,处理器的性能高达1.25 MIPS/MHz.支持单周期硬件乘除法,最高时钟频率72 M,最大可达512 kB片上Flash及64 kB片上RAM.同时具有多达30路PWM及3个12位精度的ADC等众多适合做逆变及电机驱动的外设。在本系统中用于产生PWM、SPWM驱动信号,并对采样信号进行处理,以完成稳压反馈及保护功能,并驱动点阵液晶显示系统信息。考虑实际的功率管及驱动芯片的速度,升压PWM波的频率为20 kHz,逆变SPWM波的频率为18 kHz.根据调制方法的不同,SPWM驱动信号形式可以分为:双极性、单极性和单极性倍频。由于双极性调制失真度小,故本设计中SPWM采用双极性驱动方式。

  2)点阵液晶

  选用LPH7366型点阵液晶,具有超低功耗的特点。用于显示系统当前的工作状态,如输出电压、输出电流、输入电压等信息。同时指示系统是否处于保护以及处于何种保护状态。

  3)辅助电源

  为系统不同部分提供不同的电压电需求,由直流输入电压经LM2596—5 V降压到5.0 V后一部分为采样电路供电,另一部分经LDO稳压器LM117—3.3 V稳压到3.3 V供处理器及点阵液晶使用。同时,由推挽变压器的一个辅助绕组得到20 V左右的电压,经整流滤波及LM2596-ADJ稳压到15 V后供驱动电路使用。

  4)驱动电路

  选用东芝半导体公司生产的高速光耦隔离型IGBT/MOSFET驱动芯片TLP250.TLP250具有隔离电压高、驱动能力强、开关速度快等特点。驱动电路的原理图如图3所示。

  

 

  图3 驱动电路原理图

在推挽升压驱动(U1、U2)中,TLP250负责驱动信号幅值与电流的匹配,而对于全桥逆变驱动(U3、U4、U5、U6),不但要考虑驱动电平和驱动能力,还要考虑好上下管驱动信号的隔离问题。为简化设计,全桥逆变的上管驱动(U3、U5)采用了自举供电的方式,减少隔离电源的使用数目。

  对逆变桥的驱动电路,为避免上下管直通,设计中需要考虑死区问题。STM32单片机的PWM模块具有死区功能,本设计采取了软件死区方法。这样做的另一个好处是,对不同的功率管只需改变软件设计即可获得最佳的死区参数。

  5)采样电路

  输出电压采样用于反馈稳压,输出电流采样用于过载保护,母线电流采样用于短路保护,母线电压采样用于限制母线电压虚高,输入电压采样用于输入过压/欠压保护。输出采样中使用了电流互感器与电压互感器,大大减小了系统干扰,提高了系统的可靠性。取样电路的原理图如图4所示。

  

 

  图4 取样电路原理图

  对于输出电流取样,本设计中使用了5 A/5 mA电流互感器。由于电流互感器的输出为毫伏级的交流信号,为了能够被单片机内部AD模块采集到,必须将其整流成直流信号并加以放大。而普通二极管整流电路对毫伏级电压是无效的,因此,此处采用了由运算放大器(U11,LM3 58)构成的小电压整流电路。实际测试表明,该电路有效解决了毫伏级信号的采样问题。

  系统软件设计

  为了提高系统的可读性以及代码效率,软件采用状态机思想设计,图5所示为系统的状态转换图。系统上电复位后进入SAMPLE采样状态,若检测到采样完成标志FINISH则进入JUDGE状态进行判断,如果FAULT不为0即有故障信号(过压/欠压、过载、短路),则进入PROTECT状态关闭输出,并跳转到WAIT状态等待故障信号消除。当故障信号消除后,系统软重启,开始新的采样及检测。JUDGE状态后如果未检测到故障信号,则进入NORMAL正常状态,进行电压调整。

  

 

  图5

系统上电后,首先完成各个外设的初始化,主要包括系统时钟、定时器、GPIO口、ADC、DMA、中断及SPI的初始化。在此,定时器和中断一旦初始化完成,PWM及SPWM波就会生成。考虑到过流、短路保护及反馈稳压的实时性要求较高,故在中断内完成。欠压、过压对实时性要求低,放在主程序内。为提升系统的性能,ADC采样使用DMA方式传输数据,传输完成后,发出中断申请,对采集到的数据进行简单滤波处理,其他功能函数调用此数据完成相应的保护及稳压功能。主程序的流程图如图6所示。

  

 

  图6

  调试与实验

  根据以上思想试制一台400 W的样机,采用IRF3205作为推挽升压的功率管,HER307作为整流二极管,全桥逆变功率管则采用IRF840.前级升压的PWM波频率设置为20 kHz,后级SPWM波的频率设置为18 kHz,输出滤波电感L为1 mH,输出滤波电容C为4.7μF.实际测试正弦交流输出电压精度为220 V±1%,频率精度为50 Hz±0.1%,THD小于1.5%,逆变效率大于87%,其满负载时的试验波形如图7所示(输出经20 kΩ/100 kΩ电阻分压测到)。

  

 

  图7

  结束语

  文中完整地讨论了以STM32单片机为主控制器的数控正弦波逆变电源的设计,并对其中涉及关键问题进行了详细的讨论。针对高端电子设备对逆变电源的更高要求,提出了一种有效的解决途径。使用该设计方案在简化逆变电源的硬件设计的同时,大大提升了电源的品质与性能,具有很高的推广价值。

关键字:正弦波  逆变电源 引用地址:基于高性能全数字式正弦波逆变电源的设计方案

上一篇:STM32L476 FPU 执行效率之比较浅析
下一篇:嵌入式LWIP网络客户端设计

推荐阅读最新更新时间:2024-03-16 15:10

基于ADMC331的数字化逆变电源设计
1 引言   随着信息技术的发展, 逆变电源 越来越广泛地被应用于通信、军事、航空、航天等领域。传统的 逆变电源 多为模拟控制或者模拟与数字相结合的控制系统,其可靠性差、结构复杂、成本偏高且不利于产品更新换代。现代的 逆变电源 正朝着全 数字化 、智能化及网络化的方向发展。随着高性能的数字信号处理器(DSP)的出现, 逆变电源全 数字化 的实现已经成为可能。本文在对 ADMC331 进行详细分析的基础上,介绍了 ADMC331 控制器在全 数字化 逆变电源中的具体应用。   2  ADMC331 的结构特点   ADMC331是美国模拟器件公司(ADI)推出的基于DSP技术的电机控制器,它在内部集成了一个26MIPS(每秒百万条指
[电源管理]
基于ADMC331的数字化<font color='red'>逆变电源</font>设计
基于SG3525A的太阳能逆变电源设计
摘 要:本文主要介绍了SG3525A在研制太阳能逆变电源中的应用,其脉冲波形随设计线路的不同而产生不同的结果,从而解决了随机烧毁功率管的技术问题。 关键词:SG3525A;逆变电源;MOSFET-90N10 引言 本文涉及的是光明工程中一个课题的具体技术问题。该课题的基本原理是逆变器由直流蓄电池供电,用太阳能为蓄电池充电,然后逆变电源输出220V、50Hz的交流电供用户使用。在研制过程中,有时随机出现烧毁大功率管的现象,本文对这一现象给出了解决方案。 图1 SG3525A驱动MOS功率管电路图 图2 逆变器工作过程中波形图 (a) (b) 图3 (A)逆变器缓启动(B)逆变
[应用]
基于PICFxx单片机控制的正弦波逆变电源设计
引言   逆变电源是一种采用电力电子技术进行电能变换的装置。随着电力电子技术的发展,逆变电源的应用越来越广泛,但应用系统对逆变电源的输出电压波形特性也随之提出了越来越高的要求,因为电源的输出波形质量直接关系到整个系统的安全和可靠性指标。   随着数字信号处理技术的发展,以SPWM控制方式设计的逆变电源越来越受到青睐。本文介绍的SPWM逆变电源就是采用PIC单片机来实现SPWM控制和正弦波方式输出,而且电路简单,性能安全可靠,灵活性强,同时可以降低谐波,提高效率。   1 SPWM逆变器结构   逆变电源的拓扑结构有多种形式,图1所示是SPWM逆变电源的基本结构,它主要由变压器中心抽头推挽式升压电路、逆变电路、滤波电路、驱
[单片机]
基于PICFxx单片机控制的<font color='red'>正弦波</font><font color='red'>逆变电源</font>设计
基于XC866的PWM直流无刷电机的正弦波控制
传统的直流无刷电机采用方波控制方式,控制简单,容易实现,同时存在转矩脉动、换相噪声等问题,在一些对噪声有要求的应用领域存在局限性。针对这些应用,采用正弦波控制可以很好的解决这个问题。 直流无刷电机的正弦波控制简介 直流无刷电机的正弦波控制即通过对电机绕组施加一定的电压,使电机绕组中产生正弦电流,通过控制正弦电流的幅值及相位达到控制电机转矩的目的。与传统的方波控制相比,电机相电流为正弦,且连续变化,无换相电流突变,因此电机运行噪声低。 根据控制的复杂程度,直流无刷电机的正弦波控制可分为:简易正弦波控制与复杂正弦波控制。 (1)简易正弦波控制: 对电机绕组施加一定的电压,使电机相电压为正弦波,由于电机绕组为感性负载,因此电机相电流
[工业控制]
基于XC866的PWM直流无刷电机的<font color='red'>正弦波</font>控制
基于CAN总线的并联逆变电源通信监控系统研究
逆变电源的模块化并联运行可大大提高系统的灵活性,打破逆变电源在功率等级上的限制,用户可根据需要组合系统的功率,同时便于实现冗余设计,因而具有高可靠性和易于大功率化的优点。并联逆变电源通信监控技术的研究是交流电源系统从传统的集中式供电向分布式供电乃至智能电源系统供电模式发展过程中必须解决的一个课题 。本文介绍一种基于CAN现场总线的并联逆变电源通信监控系统。系统充分利用TI公司TMS320LF2407A DSP芯片的内部资源,通过CAN总线从各并联模块获取并解析现场控制数据,响应现场强实时性操作,实现对模块工作的调度监控,具有结构简洁、扩容方便及可靠性高的优点。 1 系统组成 1.1 系统网络结构   系统组成如图1所
[嵌入式]
SPWM正弦波逆变系统改造详解
一、 电路 原理分析及部分元件的选择 电路中的U1B组成一个文氏电桥振荡器 ,它的特点是起振容易,波形失真很小,频率也很稳定.其振荡频率由R1 R2 C1 C2决定,当C1,C2为标准的104时,R1,R2为31.8K时,频率刚好为50HZ左右,R1,R2可以在标称 电阻 33K中挑选.VR3为反馈调节电位器,可以调节振荡器输出的正弦波的幅度.D5,D6为稳幅 二极管 .从振荡器出来的正弦波分成4路,2路进入U2A,U2B组成的精密整流电路变成馒头波;2路进入由U6A,U6B组成的同步波发生电路变成方波。 U1A是一级隔离放大器,其 电压 增益为2倍,也可以接成跟随器的形式,因为我考虑到5532在做跟随器时是否会不稳定,所以给
[电源管理]
SPWM<font color='red'>正弦波</font>逆变系统改造详解
基于HPWM技术的大功率正弦超声波逆变电源
1引 言 大功率超声波装置除用于工业清洗外,还在医疗、军事、石油换能器技术,以及海洋探测与开发、减噪防振系统、智能机器人、波动采油等高技术领域有着广泛的应用前景 。超声波装置由超声波逆变电源和换能器组成。近年来,由于新型稀土功能材料的开发和研制成功,使制造大功率超声波换能器成为可能,但与之配套的高频正弦逆变电源产品尚为少见。目前,市场上的大功率正弦逆变电源均为采用IGBT制成的中低频产品 ,而高频逆变电源大多数是方波电源或占空比可调的脉冲逆变电源。因此,高频大功率正弦逆变电源已成为超声波应用的瓶颈,使得对该电源的研制已成为急待解决的问题。这里,应用混合脉宽调制(Hybrid Pulse Width Modulation,H
[电源管理]
采用IGBT的正弦波中频逆变电源
摘要:介绍了用IGBT作功率器件的中频逆变电源,对电路的工作原理进行了详尽的分析。 关键词:绝缘栅双极晶体管;中频逆变电源;驱动;正弦波脉宽调制 引言 400Hz中频电源在工业、国防、航海、航空等领域中应用非常广泛。目前在我国,400Hz中频供电系统大多为中频机组,体积大,噪音高,效率低,管理不便。我们研制了一台用绝缘栅双极晶体管(IGBT)做为主功率开关器件的400Hz正弦波中频逆变电源,它具有体积小,重量轻,噪音低,转换效率高,工作可靠,使用方便等优点,是中频机组的理想替代新产品。 IGBT是新一代复合型电力电子器件,它的控制级为绝缘栅控场效应晶体管,输出级为双极功率晶体管,因而它兼有两者的优点而克服了两者的缺点,如高
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved