基于80C196KC的ARINC429总线接口板设计

发布者:独行于世最新更新时间:2016-10-21 来源: eefocus关键字:80C196KC  ARINC429  总线接口板 手机看文章 扫描二维码
随时随地手机看文章
 
1 引言

ARINC429总线是美国航空无线电公司(ARINC)制定的民用航空数字总线传输标准,又称为Mark33数字信息传输系统,目前广泛应用于商用及运输飞机上,我国信息产业部也于1986年参考ARINC429标准颁布实施了我国自己的航空通信标准HB-6096-86,其标准和ARINC429基本一致。

传统的ARINC429总线收发板多是直接插到计算机的主板接口上,实现起来过于麻烦,并且要编写相应得驱动程序来实现数据的实时显示和存储。本文介绍了一种基于Intel的16位单片机80C196KC的ARINC429总线收发板,它既可以通过串口连接到计算机上,同时又可以实现数据在收发板的存储和显示,设计简单,便于携带,给ARINC429总线的检测带来了很大的方便。

2 ARINC429总线的传输标准及系统整体设计

ARINC429协议规定以串行方式实现数字数据信息的传输,并且只能是单向传输,所以

在总线上只允许有一个发送设备,可以同时有多(不超过20个)个接收设备,信息编码的基本格式有两种,32位或25位数字组成的基本数据单元,无论那种格式都包括8位标志位、

1位奇偶校验位和两位状态位,两种传输格式的不同只是携带数据的长度不同,数据的传输速率有100Kbps和12.5Kbps两种,既可以实现高速传输又可以低速传输[1]。

接口板设计的目的是能够实现对ARINC429总线进行数据的接收和发送,,它既能接收双极归零制的429信号并将其转换为数字信号送入计算机或其它设备,又可将计算机或其它设备发出的数字信号转换为429信号输出。本文介绍的总线接口板以Intel的十六位单片机MCS-80C196KC为核心,实现数据的接收和发送、外围芯片的逻辑控制、数据的存储和显示以及和计算机的接口[3][4]。ARINC429总线协议芯片HS-3282完成发送时数据的缓存和并行、串行的相互转换,HS-3182为ARINC429总线的驱动芯片,可以实现系统内部逻辑信号与ARINC429所要求的差分信号的转换,同时可以作为发送数据的缓存和调节发送速率,系统的整体框图如图1所示:

 

1.jpg

图1 系统的整体框图

3 接口板的硬件设计

ARINC429总线协议芯片和驱动芯片

ARINC429的接收电路已经有了工业标准的芯片组,其中以Harris公司生产的HS-3282和HS-3182最为流行,HS-3282是总线协议芯片,HS-3182是总线驱动芯片,都满足ARINC429的通信标准。

HS-3282是十六位宽的计算机数据总线和ARINC429总线的接口,它有2接收通道和一个发送通道,HS-3182是实现电平的转换,有关于这两个芯片的介绍很多,这里就不再说明。由于ARINC429总线的数据宽度为32位,而HS-3282的数据位宽为16位,因此用了两个字WORD1、WORD2与计算机交换收发的32位ARINC429总线上的数据,其数据的对应关系如表1和表2所示[2]:

表1. WORD1与ARINC429总线数据位的关系

WORD11514131211109876543210

429协议13121110931303212345678

429定义数据低位S/DSSMP标志位

表2. WORD2与ARINC429总线数据位的关系

WORD21514131211109876543210

429协议29282726252423222120191817161514

429定义±数据位

从表1和表2可以看出,ARINC429的数据位和计算机的数据位并不是一一对应的,在WORD1中有标志位、奇偶校验位P、状态位SSM、源目标标志S/D以及数据低位,WORD2是十六位数据,并且8位标志位是反序的,有时会带来不便,但计算机采集来的数据可以直接应用到WORD2上,在发送数据时会非常方便。

HS-3182是作为ARINC429总线的发送设备完成两路信号的差分驱动,与HS-3182相连的电容控制用来控制ARINC429的传输速率,其中c1,c2为75pF时对应ARINC429总线的高速状态(100Kbps)、为300pF时对应ARINC总线的低速状态(12.5Kbps),因此尽量用高精度、军品级的电容,HS-3282和HS-3182相连的电路图如图2所示:

 

2.jpg

图2 HS-3282和HS-3182的连接图

3.2 ARINC429总线收发硬件电路

硬件的计算机系统采用Intel的16位单片机80C196KC,该CPU可以动态的配置成8位或者16位的总线宽度,结构采用寄存器结构,有232字节的RAM寄存器阵列供用户配置,外接晶振为12MHz或者20MHz,可以满足ARINC429总线的高速发送和接收。CPU和HS-3282的接口比较简单,发送时常和HS-3182相配合使用,因为HS-3282的数据宽度为16位的,因此单片机也配置成16位总线宽度,CPU和HS-3282的接口部分关键就是对收发的逻辑控制,诸如接收器1数据可以读取标志D/R1,接收器2数据可以读取标志D/R2,总线选择信号SEL等端口都需要CPU的控制和监视,在这里就直接和CPU的I/O口相连,当然也可以通过CPU的I/O,/RD,/WR及地址的低位和GAL或者CPLD相连,通过编成组成专门的逻辑控制电路,这在单片机的I/O口不够用时可以采用这种办法,HS-3282需要CPU控制和监视的管脚如表3所示:

表3. S-3282控制及状态的引脚及功能

符号管脚号输入/输出描述

SEL8输入总线数据选择,选择两个十六位中的一个,用于接收器1或2

/DR16输出接收器1数据可以读取标志

/DR27输出接收器2数据可以读取标志

/EN19输入接收器1中的数据输出到总线上

/EN210输入接收器2中的数据输出到总线上

/MR39输入复位信号

ENTX33输入发送使能信号,使数据从HS-3182的FIFO发送到429总线上

/PL128输入第1个16位字发送到FIFO中

/PL229输入第2个16位字发送到FIFO中

TX/R30输出发送存储器FIFO为空标志

/CWSTR34输入控制字锁存到控制寄存器

由于HS-3282是外围器件,收发速率都没有CPU快,因此要为CPU提供READY信号,在这里为CPU提供READY信号的是/EN1和/EN2管脚,只要这两个管脚有一个是低电平就可以产生READY,因此对这两个信号加一个与非门既可以产生READY信号。

4 软件设计

HS3282的收发既可以采用查询方式又可以采用中断方式,由于发送器状态标志位TX/R接到CPU的I/O口,这就限制了软件设计时发送采用查询方式。接收两种方式都可以,在这里采用中断方式接收。

初始化程序设计

在上电复位后单片机应首先进行自身初始化和HS3282的设置,主要是设置单片机的波特率和向HS3282写控制字。在这里设置单片机的串口为工作模式1,即10位构成一串行帧: 1位起始位(0),8位数据(低位在先),1位停止位(1)。单片机首先将控制字写到P3和P4端口,通过置高再置低P2.7端口,将控制字在/CWSTR的下降沿写入,进行工作方式、码速率等的设置。

接收程序设计

数据的接收以中断响应的处理为核心。HS3282有两路接收通道,这两个接收通道标志位/DR1、/DR2共享一个中断,就容易出现中断冲突现象,为了避免这种现象在硬件设计中已经考虑到了这种问题,将接收器标志/DR1、/DR2分别与单片机I/O口的P0.0和P0.1相连接,当产生接收中断时,通过软件检测方式判断是哪一路引起的中断,其软件设计如下:

ReceiverData(char *data)

{

if(P0.0==0)         //P0.0=/DR1

{  P1.3=0;         //P1.3=SEL

P1.4=0;         //P1.4=/EN1

*data=P3;

*(data+1)=P4;   //接收低16位

P1.3=0;

P1.4=1;

P1.4=0;

*(data+2)=P3;

*(data+3)=P4;   //接收高16位

else

if(P0.1==0)      //P0.1=/DR2

{ P1.3=0;

P1.5=0;

*data=P3;

*(data+1)=P4;   //接收低16位

P1.3=0;

P1.5=1;

P1.5=0;

*(data+2)=P3;

*(data+3)=P4;   //接收高16位

发送程序设计

在数据的发送过程中,PC机通过串口把数据发送到单片机的串口缓存区,单片机查询到串口缓存区有数据后,接收到一个完整的数据字。同时单片机向HS3282写入一个32位的数据字也要分两次才能完成。准备好低16位数据,控制HS3282的引脚PL1,使PL1从低电平跳变到高电平,将低16位数据写入;同样的方法将高16位数据在PL2从低电平跳变到高电平写入。通过启动HS3282的引脚ENTX发送控制信号,HS3282将自动发送数据,其标准满足ARINC429协议,单片机检测到TX/R为高,即数据发送完成时将ENTX置低。发送函数如下所示:

SendData(char *data)

{ P1.6=0;            //P1.6=PL1

P3=*data;

P4=*(data+1);      //低16位

P1.6=1;            //上升沿写入

P1.7=0;            //P1.7=PL2

P3=*(data+2);

P4=*(data+3);      //高16位

P1.7=1;            //上升沿写入

P2.6=0;            //P2.6=ENTX,发送使能

while(P0.2);       //P0.2=TX/R,检查是否发送完成

P2.6=1;            //发送禁止

5 结论

基于16位单片机的ARINC429总线接口板利用高性能的专用芯片组HS3282和HS3182来设计总线接口,由于该芯片能很好的满足ARINC429协议,给接口板的设计带来了很大的方便,经实际利用简单有效,并且具有很高的可靠性。

关键字:80C196KC  ARINC429  总线接口板 引用地址:基于80C196KC的ARINC429总线接口板设计

上一篇:基于VB6.0的MSP430单片机与PC机串口通信设计
下一篇:单片机系统的电磁兼容性设计讲解

推荐阅读最新更新时间:2024-03-16 15:16

一种基于80C196KC的电子软起动器的软硬件实现
全数字电子软起动器不仅能有效控制鼠笼式三相异步电动机起动电流,减缓电流对电动机和电网的冲击,还能在起动和运行过程检测电流、电压参数,对异常情况进行处理、显示及报警,实现对电动机的综合保护。 三相鼠笼式异步电动机以其结构简单、性价比高和工作特性好等诸多优点,在当今工业应用的各个领域都有广泛的应用,但它有一明显缺点,就是起动电流过大(一般起动电流为额定电流的5~7倍甚至更大),这样不论是对电动机本身,还是对电网以及其他电气设备,都会产生不利的影响。 电子软起动器的诞生,已经从很大程度上提供了解决这个技术难题的有效手段,而且近年来随着电力电子技术以及智能控制技术的不断发展,电子软起动器已经逐步取代了传统的起动方法,例如“
[单片机]
一种基于<font color='red'>80C196KC</font>的电子软起动器的软硬件实现
基于MCU+FPGA的航空总线接口测试平台设计
引言 本文的项目背景是为了测试在航空领域CAN总线和高速异步总线的通信状况。CAN(控制器局域网)总线是由ISO(国际标准化组织)定义的有效支持分布式控制和实时控制的多组串行通信总线,由于其在通信能力、实时性、灵活性、易用性、传输距离远、可靠性等方面有着明显的优势,日益受到人们的重视,在航空等领域已得到广泛应用,成为目前比较流行的现场总线之一。RS485标准的全称为TIA/EIA-485串行通讯标准,为弥补RS-232通信距离短、速率低等缺点而产生的,其数据采用平衡发送和差分接收,具有抑制共模干扰的能力,抗噪声干扰性好。RS485具有多站能力(在总线上允许连接多达128个收发器),是一种相对经济、具有相当高噪声抑制、相对高的
[嵌入式]
USB标准适用于哪些应用
通用串行总线 (USB) 外设接口已广泛应用于所有个人计算平台及众多工业和基础设施平台。不过,与此同时,人们对适用于给定应用的 USB 版本,如 USB 1.0,USB 1.1,USB 2.0,On-the-Go (OTG) 或 WirelessUSB (WUSB) 等,还不太清楚。随着 USB 1.1 规范的发布,以及 Microsoft 操作系统为这一标准提供原生支持,这使得 USB 主机接口在 PC 中快速普及,同时也使众多外设由传统接口,如串行 (RS-232)、PS-2(鼠标和键盘)和并行端口(打印机使用的 Centronix 和 IEEE-1284)等,向这种新型通用接口标准过渡。 随着 USB 2.0 规范的发布,
[模拟电子]
USB标准适用于哪些应用
DSP+FPGA的机载总线接口研究(二)
发送部分的主要功能是将DSP送入的数据暂存在FPGA内部的FIFO中,等待发送命令。一旦接到发送控制指令,FIFO输出数据并通过并/串转换将并行数据转换为串行数据,同时加入预先设定的间隔。用户可通过写控制寄存器选择发送模式(即单帧发送或自动重复发送)、发送通道延迟设定、发送通道字间隔设定,还可通过读取状态位检查它的工作状态(发送缓冲器空、发送缓冲器满和是否正在发送)。发送模块结构框图如图4所示。      图4 发送模块结构框图   FPGA内部结构是基于SRAM的,因此需要一片配置芯片固化内部逻辑。为了便于调试,采用JTAG模式和被动串行模式(PS)两种配置模式,调试时使用JTAG模式直接将逻辑写入FPGA内部
[模拟电子]
DSP+FPGA的机载<font color='red'>总线接口</font><font color='red'>板</font>研究(二)
USB的便携式ARINC429总线通信设备设计
在航空 电子 综合化系统中,快速、有效的数据传输对整个航空 电子 系统的性能有很大影响,因此数据总线被称为现代航空电子系统的“骨架”。ARINC429是航空电子系统之间最常用的通信总线之一。要在计算机上实现与机载设备的ARINC429总线数据通信,必须实现429总线与计算机总线之间的数据传输。本文设计了基于USB总线的便携式ARINC429总线通信设备,并通过实际运行测试,对该设备的可靠性和稳定性进行了验证。 1 系统总体设计 1.1 系统功能分析 该系统主要分为3大功能单元:中央 控制 单元、429数据收发单元、429电平转换单元。系统的功能结构框图如图1所示。中央 控制 单元与PC机进行USB通信,将USB总线转换为自定
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved