晶振在电气上可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率为串联谐振,较高的频率为并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。我们具体看一下例子:
Y1是晶体,相当于三点式里面的电感,C1和C2就是电容,5404非门和R1实现一个NPN的三极管,5404必需要一个电阻,不然它处于饱和截止区,而不是放大区,R1相当于三极管的偏置作用,让5404处于放大区域,那么5404就是一个反相器,这个就实现了NPN三极管的作用,NPN三极管在共发射极接法时也是一个反相器。
大家知道一个正弦振荡电路要振荡的条件是,系统放大倍数大于1,这个容易实现,相位满足360度,与晶振振荡频率相同的很小的振荡就被放大了。接下来主要讲解这个相位问题:
5404因为是反相器,也就是说实现了180°移相,那么就需要C1,C2和Y1实现180°移相就可以,恰好,当C1,C2,Y1形成谐振时,能够实现180移相,这个大家可以解方程等,把Y1当作一个电感来做。也可以用电容电感的特性,比如电容电压落后电流90°,电感电压超前电流90°来分析,都是可以的。当C1增大时,C2端的振幅增强,当C2降低时,振幅也增强。有些时候C1,C2不焊也能起振,这个不是说没有C1,C2,而是因为芯片引脚的分布电容引起的,因为本来这个C1,C2就不需要很大,所以这一点很重要。接下来分析这两个电容对振荡稳定性的影响。
因为5404的电压反馈是靠C2的,假设C2过大,反馈电压过低,这个也是不稳定,假设C2过小,反馈电压过高,储存能量过少,容易受外界干扰,也会辐射影响外界。C1的作用对C2恰好相反。因为我们布板的时候,假设双面板,比较厚的,那么分布电容的影响不是很大,假设在高密度多层板时,就需要考虑分布电容。如何得出晶振的负载电容:晶振线路两旁电容C1,C2.晶振匹配电容选择:[(C1*C2)/(C1+C2)]+(4~6PF)杂散电容.C1,C2是晶振旁边的两颗外接电容.
关键字:STM32 晶振
引用地址:
STM32中晶振的原理与作用
推荐阅读最新更新时间:2024-03-16 15:41
STM32GPIO——快速IO的使用
STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSRR和GPIOx_BRR寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置'1'或置'0'。 GPIOx_BSRR的高16位中每一位对应端口x的每个位,对高16位中的某位置'1'则端口x的对应位被清'0';寄存器中的位置'0',则对它对应的位不起作用。 GPIOx_BSRR的低16位中每一位也对应端口x的每个位,对低16位中的某位置'1'则它对应的端口位被置'1';寄存器中的位置'0',则对它对应的端口不起作用。 简单地说
[单片机]
STM32电机控制同步电角度测试说明
前言 在使用 ST FOC电机库 时,当使用Hall信号作为位置信号时,需要输入同步电角度数据,这个数据根据当前使用电机的特性进行输入,会在每次Hall信号变化时同步电角度,如果角度偏差较大时会影响控制效果,可能带来效率或者电机的震荡,初始测试还是有必要的,本文详细说明测试注意事项以及测试方法。 ST FOC电机库 电角度约定( STM32 PMSM FOC SDK电机控制固件库 ) 默认电机A相的反电动势最高点作为电角度的0度; 电机Hall A的上升沿到电机A相反电动势最高点的延迟角度为同步电角度; 测试准备 如果电机没有虚拟中点接出,需要连接三个相同阻值电阻到电机的三相接线上,电阻另外一端连接到一起作为虚拟中点;
[单片机]
stm32.cube(二)——HAL结构及初始化
一、HAL结构 HAL的作用是将基础的寄存器读写操作抽象掉,使程序员只需要关心对芯片模块的行为级操作。stm32的cube包以类似面向对象的思想来进行设计,每一个芯片模块都被抽象成一个类,它的私有成员用以辅助算法的实现,公有成员被用作一个方法供外部调用。 我开发板的芯片型号是stm32f10x系列,基础的芯片结构如下: 这时官网上下载的cube包里hal内容: 对比之后发现几乎所有的模块都已经被包含进HAL层。 二、HAL的初始化 HAL层被调用前要先运行初始化函数HAL_init(),它包含在针对HAL自身的全局操作操作的源文件hal.c里。 HAL全局结构 由于Hal_init函数不长,就直接上原型了: HAL_
[单片机]
stm32入门——跑马灯(基于stm32f103zet6)
最近开始学stm32,着实感觉到了stm32和51之间的区别,但也有联系,总我感觉32与51之间最大的区别就是在使用某个外设之前,要对该外设进行时钟的使能(以达到降低功耗的目的),和相关配置。 刚学完跑马灯,下面对跑马灯用到的对IO口的配置相关知识分别对应官方库函数和寄存器进行总结。 如有错误或不足,请在下方留言。 文章内容基于正点原子战舰。 IO口的状态 IO口有八大模式:─ 输入浮空( GPIO_Mode_IN_FLOATING = 0x04,) ─ 输入上拉( GPIO_Mode_IPU = 0x48,) ─ 输入下拉( GPIO_Mode_IPD
[单片机]
stm32开发板开发笔记(5)-2.4寸26万色TFT触摸屏模块
因为产品要用到显示屏和触摸,就买了一个2.4寸的彩色触摸屏模块。 原理图: 显示屏的驱动芯片是ILI9325 ILI9325 is a 262,144-color one-chip SoC driver for a-TFT liquid crystal display with resolution of 240RGBx320 dots, comprising a 720-channel source driver, a 320-channel gate driver, 172,800 bytes RAM for graphic data of 240RGBx320 dots, and power supply
[单片机]
STM32 USB 设备音频数据流
音频数据流的应用 音频数据流是没有任何压缩的音频数据,我们可以直接通过I2S传输到数字功放,也可以对这些数字音频进行处理,比如EQ音量控制、音质补偿等等。 典型应用举例 首先是PC,然后PC通过USB数据线连接到MCU,MCU再通过I2S输出到功放,最后连接到喇叭或耳机。 当然,还有GUI的部分显示可以控制,同时还可以通过麦克风把音频传输到PC进行刻录或保存。 同步问题 USB外设时钟、I2C外设时钟和外部功放时钟是同步的,因为它们共用一个时钟域,但不能同步PC的时钟域。 这些不同的时钟域将会造成音频的不同步,出现断音或丢失部分音频。 主要问题 1. USB的参考时钟(SOF)并不跟系统时钟同步,主要表现在三个方面
[单片机]
巧用外设复位修改只读寄存器
有STM32开发者用到STM32F429芯片开发产品,并用到其中的CAN外设。在CAN应用过程中有个专门针对收发出错情况进行次数统计的两个计数器,其值通过错误状态寄存器CAN_ESR中的REC 和TEC 两个字段来体现,CAN硬件会根据错误数据大小做适当响应或处理。 根据寄存器描述得知,TEC 和REC 的值在这个寄存器里面是只读的。而此时的STM32用户有个强烈的需求,就是期望能适时地对这两个出错记录字段做清零。他自己也尝试编写一些代码想让二者清零,均以失败告终,便邮件咨询有无解决办法。 我们在阅读CAN_ESR寄存器内容时倒有个发现,即该寄存器的复位值是0x00000000。 也就是说,芯片每次复位后其值一定是0,
[单片机]
YXC晶振为音频调节器服务提供解决方案
随着智能技术的不断发展,音频设备正朝着智能化方向迅速发展。 音频调节器作为其中的一部分,发展优化了一系列先进的功能,音频调节器拥有对白增强、声场扩展、环境音效、声像位置调整、动态范围控制等功能,能够针对不同的播放设备和不同的音源类型进行个性化的音频性能优化,可以显著提升用户的音频体验。 本文将介绍音频调节器的时钟设计方案,该方案搭配扬兴科技YXC的有源晶振系列YSO110TR-12.288MHz,是市面上最具性价比的设计方案之一。 【方案优势】 1.体积小、功耗低、高效能、整合Wi-Fi功能的系列产品; 2.先进的数字信号处理技术和声学原理; 3.能有效的改善音乐或电影中声音沉闷浑浊、声场太窄或太宽的问题。 【方案框图】
[嵌入式]