STM32之NVIC的深入详解

发布者:心若清泉最新更新时间:2017-11-05 来源: eefocus关键字:STM32  NVIC 手机看文章 扫描二维码
随时随地手机看文章

朋友们,如果你需要在STM32上移植RTOS,那么首先必须深入理解它的中断系统。什么是NVIC?即嵌套向量中断控制器(Nested Vectored Interrupt Controller)。STM32的中有一个强大而方便的NVIC,它是属于Cortex内核的器件,不可屏蔽中断 (NMI)和外部中断都由它来处理,而SYSTICK不是由 NVIC来控制的。

特性:

●  60个可屏蔽中断通道(不包含16个Cortex™-M3的中断线);

●  16个可编程的优先等级(使用了4位中断优先级);

●  低延迟的异常和中断处理;

●  电源管理控制;

●  系统控制寄存器的实现;

1.中断优先级分组

STM32(Cortex-M3)中有两个优先级的概念--抢占式优先级和响应优先级,有人把响应优先级称作'亚优先级'或'副优先级',每个中断源都需要被指定这两种优先级。 

      具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套,或者说高抢占式优先级的中断可以嵌套在低抢占式优先级的中断中。

      当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。

    Cortex内核具有强大的异常响应系统,它把能够打断当前代码执行流程的事件分为异常(exception)和中断(interrupt),并把它们用一个表管理起来,编号为0~15的称为内核异常,而16以上的则称为外部中断,这个表就称为中断向量表。

       正是因为每个中断源都需要被指定这两种优先级,就需要有相应的寄存器位记录每个中断的优先级;在Cortex-M3中定义了8个比特位用于设置中断源的优先级,这8个比特位可以有8种分配方式,如下:

1. 所有8位用于指定响应优先级 

2. 最高1位用于指定抢占式优先级,最低7位用于指定响应优先级

3. 最高2位用于指定抢占式优先级,最低6位用于指定响应优先级

4. 最高3位用于指定抢占式优先级,最低5位用于指定响应优先级

5. 最高4位用于指定抢占式优先级,最低4位用于指定响应优先级

6. 最高5位用于指定抢占式优先级,最低3位用于指定响应优先级

7. 最高6位用于指定抢占式优先级,最低2位用于指定响应优先级

8. 最高7位用于指定抢占式优先级,最低1位用于指定响应优先级

       以上便是优先级分组的概念,但是Cortex-M3允许具有较少中断源时使用较少的寄存器位指定中断源的优先级。

      而STM32对这个表重新进行了编排,把编号从-3至6的中断向量定义为系统异常,编号为负的内核异常不能被设置优先级,如复位(Reset)、不可屏蔽中断 (NMI)、硬错误(Hardfault)。从编号 7开始的为外部中断,这些中断的优先级都是可以用户更改的。详细的 STM32中断向量号可以在startup_stm32f10x_XX.s中查找。

因此STM32把指定中断优先级的寄存器位减少到4位,这4个寄存器位的分组方式如下:

第0组:所有4位用于指定响应优先级(16种)

第1组:最高1位用于指定抢占式优先级,最低3位用于指定响应优先级(8种)

第2组:最高2位用于指定抢占式优先级,最低2位用于指定响应优先级(4种)

第3组:最高3位用于指定抢占式优先级,最低1位用于指定响应优先级(2种)

第4组:所有4位用于指定抢占式优先级

这里便对于于文章最前提到的固件库里相关的函数了——NVIC_PriorityGroupConfig(u32 NVIC_PriorityGroup),函数的参数共有5种:

这个函数的参数(NVIC_PriorityGroup值)有下列5种:

NVIC_PriorityGroup_0 => 选择第0组

NVIC_PriorityGroup_1 => 选择第1组

NVIC_PriorityGroup_2 => 选择第2组

NVIC_PriorityGroup_3 => 选择第3组

NVIC_PriorityGroup_4 => 选择第4组

      这其实也很好理解,比如选择NVIC_PriorityGroup_1,那么抢占式优先级便占一位,也就是说可以有2^1个级别,可以设置为0和1,而响应优先级则占3位,也就是说可以有2^3个选择,可以设置为0~7;总共来说就可以区别>16种优先级了。

 //NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;

 //NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

        举个例子吧,假如现在有4个外部中断,还有一个EXTI9_5中断,那么如果选择优先级分组为第1组,那么抢占式优先级便只有两种,5个中断就至少有3个在抢占式优先级上是相同的优先级上,其他两个在令一优先级别。接着设置响应优先级可以有8种选择;假如现在同时有两个抢占式优先级别相同的中断发生,那么处理的顺序是谁的响应优先级高则谁优先进入中断,另外这点是需要注意的,如果此时进入这个中断之后又来了一个抢占式优先级相同但是响应优先级更高的中断,这时也是不会打断已有的中断的。

void NVIC_Config(void)

  {

 NVIC_InitTypeDef NVIC_InitStructure;

 #ifdef  VECT_TAB_RAM

    //Set the Vector Table base location at 0x20000000 

    NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);

 #else

    //Set the Vector Table base location at 0x08000000 

    NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0); 

 #endif

   NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);  //中断优先级组 :1组(整个系统为同一组)

 // 设置先占优先级0~1,响应优先级0~7

    NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; 

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

    NVIC_Init(&NVIC_InitStructure);

    //* Enable the TIM3 Interrupt

   NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;       // TIM3 全局中断

   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; // 先占优先级 1

   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;    // 从优先级 1

   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;       // IRQ通道被使能

   NVIC_Init(&NVIC_InitStructure);

   NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;

   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0

   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;      //响应优先级0

   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

   NVIC_Init(&NVIC_InitStructure);

 

}


关键字:STM32  NVIC 引用地址:STM32之NVIC的深入详解

上一篇:STM32高级定时器那些事
下一篇:Stm32平台UCOSII的简单使用及注意事项

推荐阅读最新更新时间:2024-03-16 15:43

STM32的堆栈(Heap&Stack)空间
最近做的一个项目遇到一个很莫名的错误,程序运行到某一部分时便会卡死,分析后,感觉在逻辑上并无错误,但是就是会卡死,而且不是偶然。 后来在网上查找资料怀疑是内存溢出,然后调试发现是两个函数中的的局部变量申请的内存空间太大,所以错误应该是栈溢出了。将这两个变量使用malloc申请堆段空间完美解决。 下面是对STM32的堆栈(Heap&Stack)小结: 内存分配空间 内核保护区 栈段 堆段 数据区 代码区 代码区 :静态区 常量(const) 函数代码逻辑 数据区:静态区 全局变量 局部变量+static 堆段:动态区,管理者是程序员 malloc申请的空间 栈段:动态区,管理每个子函数的空间,管理
[单片机]
<font color='red'>STM32</font>的堆栈(Heap&Stack)空间
stm32中断嵌套实例分析
  STM32中断嵌套方法   STM32中断嵌套方法先说明: 所有中断要放在同一个组里, 因为只有组确定了, 4位描述占先式优先级和副优先级的位数才可以确定。   NVIC——Nested Vectored Interrupt Controller(嵌套中断向量控制器)   STM32有43个channel的settable的中断源:AIRC(Application Interrupt and Reset Register)寄存器中有用于指定优先级的4bits。这4个bits用于分配pre-emption优先级和sub优先级,在STM32的固件库中定义如下:   NVIC_PriorityGroup_0 ((u32)0x
[单片机]
<font color='red'>stm32</font>中断嵌套实例分析
STM32 无法使用IAR下载程序问题
一开始建立了工程,然后程序下载都很正常。不知道什么情况自己下载代码之后,再重新下载代码无法成功。 我按照提示找了一下FlashStm32f30x8.flash这个文件,却发现IAR的目录下没并没有。又怀疑是IAR文件丢失。 重新安装IAR,却发现问题仍然继续. ~~~~感觉像是芯片坏了~~~ 于是通过STVP工具,读取一下。 奇迹发生了,竟然可以读取程序。 嗯~~那可以排除芯片的问题。 好吧,那我重新用IAR下载应该可以吧。 于是重新下载程序, 晕~~~居然还是弹出那个错误。 难道自己的程序竟然会引起这样的错误??? !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 于是通过STVP将
[单片机]
<font color='red'>STM32</font> 无法使用IAR下载程序问题
基于STM32单片机的64Mbit单对单通信
简单的一种应用,ARM芯片作为master,flash为slaver,实现单对单通信。ARM主控芯片STM32F103,flash芯片为MACRONIX INTERNATIONAL的MX25L6465E,64Mbit。 SPI应该是嵌入式外围中最简单的一种应用了吧!一般SPI应用有两种方法:软件仿真,手动模拟产生时序和应用主控芯片的SPI控制器。 一般采用第二种方法比较好,比较稳定。应用主控芯片的SPI控制器,要点:正确的初始化SPI、操作SPI各寄存器和正确理解flash的时序。下面是过程,采用的是STM32F10X自带的库函数 1、初始化:void SpiFlashIniTIalzaTIon(void); 要知道
[单片机]
基于<font color='red'>STM32</font>单片机的64Mbit单对单通信
STM32入门学习笔记之低功耗实验
13.1 STM32低功耗模式概述 STM32在系统或电源复位后,芯片处于运行状态,此时HCLK为CPU提供时钟,内核执行程序代码,当CPU不需要继续运行时,可以采用低功耗模块来降低芯片的运行电流,STM32有3种低功耗模式: (1)睡眠模式:内核停止,外设继续运行 (2)待机模式:1.8V的内核电源被关闭,SRAM内容丢失,PLL,HIS,HSE振荡器断电,此模式下最低电流2uA (3)停机模式:停止所有时钟,此模式下最低电流20uA 上述三种模式的配置与唤醒条件如下表所示。 模式 进入操作 唤醒 睡眠 WFI指令 任一中断 WFE指令 唤醒事件 待机 PDDS位+SLEEPDEEP位+WFI或者WFE WKUP
[单片机]
STM32存储器 — <2>STM32存储器知识的相关应用
在我的另一篇笔记《stm32的存储器》中讲述了STM32的存储器结构,及个人理解。 本篇文章将重点描述在对存储器有了比较深入了解之后的一些相关的操作案例;重点在于STM32启动设置和IAP使用,以及bit banding的理解,加上一个简单的IAP程序设计。 1 STM32的启动 根据参考手册RM0008中的图表: 得知STM32的启动有三种模式,三种模式的选择在于芯片上的两个Boot引脚,如RM0008种描述: 在系统复位之后的四个上升沿后索存BOOT引脚,从而决定启动方式;用户对BOOT引脚的设置决定了系统复位之后的启动模式。 三个不同的启动区域有着不同的起始地址,STM32这样规定:
[单片机]
STM32 USB SD卡读卡器和NAND FLASH模拟U盘
本次工程是要同时实现SD卡读卡器和NAND Flash模拟U盘的功能。结合之前的两个工程,稍稍修改下就可以了。 既然要实现两个盘,当然在usb_prop.c中的Max_Lun变量赋值为1,在USB_User组中同时添加fsmc_nand.c和sdio_sdcard.c这两个文件,在外设库中挺尸添加stm32f10x_sdio.c和stm32f10x_fsmc.c两个文件。 添加完之后,可能会有些许的错误,解决完后,我们就要修改下mass_mal.c文件了,这个文件本次要同时实现SD卡和NAND Flash的相关驱动代码的挂接,代码如下: uint32_t Mass_Memory_Size ; uint32_t Mass_Block
[单片机]
<font color='red'>STM32</font> USB SD卡读卡器和NAND FLASH模拟U盘
Cortex M3 NVIC与中断控制
一、NVIC概览 ——嵌套中断向量表控制器 NVIC 的寄存器以存储器映射的方式来访问,除了包含控制寄存器和中断处理的控制逻辑之外, NVIC 还包含了 MPU、 SysTick 定时器以及调试控制相关的寄存器。NVIC 共支持 1 至 240 个外部中断输入(通常外部中断写作 IRQs)。具体的数值由芯片厂商在设计芯片时决定。此外, NVIC 还支持一个“永垂不朽”的不可屏蔽中断( NMI)输入。NVIC 的访问地址是 0xE000_E000。所有 NVIC 的中断控制/状态寄存器都只能在特权级下访问。不过有一个例外——软件触发中断寄存器可以在用户级下访问以产生软件中断。所有的中断控制/状态寄存器均可按字/半字/字节的方式访问
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved