STM32学习笔记之时钟分析

发布者:VelvetSoul最新更新时间:2017-11-06 来源: eefocus关键字:STM32  时钟分析 手机看文章 扫描二维码
随时随地手机看文章

本文结合网上的两篇时钟分析文章,并结合本人的理解来分析STM32的时钟系统。

众所周知,一个微控制器或处理器的运行必须要依赖周期性的时钟脉冲来驱动,通常是通过外接晶振来实现的。在学习单片机(51系列,AVR系列,PIC系列)的过程中,只要设定了外接晶振,我们就只关心的时序图,无需再进行时钟的配置,而STM32微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速率不再有固定的关系,本文将来详细解析STM32微控制器的时钟树。

在官方提供的STM32参考手册或数据手册中,提供了如下的时钟树结构图:

为了方便分析,简化为如下的时钟树,


由图可知:STM32主要有5个时钟源,分别为HSI、HSE、LSI、LSE、PLL,如灰蓝色如示,而PLL是由锁相环电路倍频得到PLL时钟。从上到下分析,分别 为:

  1. HSI是高速内部时钟,内置RC振荡器,频率为8MHz;

  2. HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz,一般接8MHz石英晶振;

  3. LSE是低速外部时钟,接频率为32.768kHz的石英晶体,主要提供一个精确的时钟源一般作为RTC时钟使用;

  4. LSI是低速内部时钟,RC振荡器,频率为40kHz。它供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择;

  5. PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2,倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。 


系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:


  1. 送给AHB总线、内核、内存和DMA使用的HCLK时钟;

  2. 通过8分频后送给Cortex的系统定时器时钟;

  3. 直接送给Cortex的空闲运行时钟FCLK;

  4. 送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用;

  5. 送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。


另外:

(1)STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
(2)STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。

 

在STM32处理器,对应每一模块,都需要为其配置时钟源,我们将官方提供的时钟树再进行细化,就得到如下的时钟树,其中图中的标号分别为:1:内部低速振荡器(LSI,40Khz);2:外部低速振荡器(LSE,32.768Khz);3:外部高速振荡器(HSE,3-25MHz);4:内部高速振荡器(HIS,8MHz);5:PLL输入选择位;6:RTC时钟选择位;7:PLL1分频数寄存器;8:PLL1倍频寄存器;9:系统时钟选择位;10:USB分频寄存器;11:AHB分频寄存器;12:APB1分频寄存器;13:AHB总线;14:APB1外设总线;15:APB2分频寄存器;16:APB2外设总线;17:ADC预分频寄存器;18:ADC外设;19:PLL2分频数寄存器;20:PLL2倍频寄存器;21:PLL时钟源选择寄存器;22:独立看门狗设备;23:RTC设备



  假设我们要设置位于APB2控制的GPIO外设时钟,则我们得到的时钟轨迹应该是:3-->5-->7-->21-->8-->9-->11-->15-->16。即:首先(3)是外部的3-25MHz(前文已假设为8MHz)输入;通过(5)PLL选择位预先选择后续PLL分支的输入时钟(假设选择外部晶振);设置(7)外部晶振的分频数(假设1分频);选择(21)PLL倍频的时钟源(假设选择经过分频后的外部晶振时钟);对于8,设置(8)PLL倍频数(假设9倍频);选择(9)系统时钟源(假设选择经过PLL倍频所输出的时钟);设置(11)AHB总线分频数(假设1分频);设置(15)APB2总线分频数(假设1分频);时钟到达APB2总线(16)。

GPIO设备的最大驱动时钟速率(各个条件已在上述要点中假设):

1)   由3所知晶振输入为8MHz,由5——21知PLL的时钟源为经过分频后的外部晶振时钟,并且此分频数为1分频,因此首先得出PLL的时钟源为:8MHz / 1 = 8MHz。

2)   由8、9知PLL倍频数为9,且将PLL倍频后的时钟输出选择为系统时钟,则得出系统时钟为 8MHz * 9 = 72MHz。

3)   时钟到达AHB预分频器,由11知时钟经过AHB预分频器之后的速率仍为72MHz。

4)   时钟到达APB2预分频器,由15经过APB2预分频器后速率仍为72MHz。

5)   时钟到达APB2总线外设。

因此STM32的APB2总线外设,所能达到的最大速率为72MHz。


接下来从程序的角度分析时钟树的设置,程序清单如下:

[cpp] view plain copy

  1. void RCC_Configuration(void)  

  2. {  

  3.        ErrorStatusHSEStartUpStatus;                                                                                                (1)  

  4. RCC_DeInit();                                                                                                                              (2)  

  5. RCC_HSEConfig(RCC_HSE_ON);                                                                                             (3)  

  6.        HSEStartUpStatus= RCC_WaitForHSEStartUp();                                                                 (4)  

  7.        if(HSEStartUpStatus== SUCCESS)                                                                                            (5)  

  8.        {  

  9.          RCC_HCLKConfig(RCC_SYSCLK_Div1);                                                                          (6)  

  10.               RCC_PCLK2Config(RCC_HCLK_Div1);                                                                          (7)  

  11.              RCC_PCLK1Config(RCC_HCLK_Div2);                                                                            (8)  

  12.         FLASH_SetLatency(FLASH_Latency_2);                                                                        (9)  

  13.              FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);                                    (10)  

  14.               RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);                                      (11)  

  15.        RCC_PLLCmd(ENABLE);                                                                                                         (12)  

  16.               while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)== RESET);                                                    (13)  

  17.          RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);                                                           (14)  

  18.               while(RCC_GetSYSCLKSource() != 0x08);                                                                          (15)  

  19.        }  

  20. }  


即:
(1)定义一个ErrorStatus类型的变量HSEStartUpStatus;
(2)将时钟树复位至默认设置;
(3)开启HSE晶振;
(4)等待HSE晶振起振稳定,并将起振结果保存至HSEStartUpStatus变量中;
(5)判断HSE晶振是否起振成功(假设成功了,进入if内部);
(6)设置HCLK时钟为SYSCLK的1分频;
(7)设置PLCK2时钟为SYSCLK的1分频;
(8)设置PLCK1时钟为SYSCLK的2分频;
(11)选择PLL输入源为HSE时钟经过1分频,并进行9倍频;
(12)使能PLL输出;
(13)等待PLL输出稳定;
(14)选择系统时钟源为PLL输出;
(15)等待系统时钟稳定;

注:(1)PLLCLK表示PLL锁相环的输出时钟,SYSCLK表示系统时钟,HCLK表示AHB总线的时钟,PCLK1表示APB1总线的时钟,PCLK2则表示APB2总线的时钟

(2)以上是ST官方所提供的STM32时钟树配置函数


关键字:STM32  时钟分析 引用地址:STM32学习笔记之时钟分析

上一篇:小试STM32中断程序
下一篇:STM32学习笔记之开发环境

推荐阅读最新更新时间:2024-03-16 15:43

采用STM32设计的四轴飞行器飞控系统
1、引言 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通的飞行器相比具有结构简单,故障率低和单位体积能够产生更大升力等优点,在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。因此四旋翼飞行器具有广阔的应用前景,吸引了众多科研人员,成为国内外新的研究热点。 本设计主要通过利用惯性测量单元(IMU)姿态获取技术、PID电机控制算法、2.4G无线遥控通信技术和高速空心杯直流电机驱动技术来实现简易的四轴方案。整个系统的设计包括飞控部分和遥控部分,飞控部分采用机架和控制核心部分一体设计增加系统稳定性,遥控部分采用模拟摇杆操作输入使操作体验极佳,两部分之间的通信采用2.4G无线模块保证数据稳定传输。飞行控制
[单片机]
采用<font color='red'>STM32</font>设计的四轴飞行器飞控系统
stm32学习之四
systick(滴答定时器): 系统的滴答定时器可以测试的例子是,将开发板上的LED等轮流点亮即可(我选择的是1s轮流点亮三个LED等)。 首先,系统滴答定时器的特点是,设置开启定时器的话,会自动计数,这个时候,计数到0的时候,会触发中断。 可以设置一个静态的变量,全局进行计数,从而延时。 步骤: 1、建立一个SysTick.h文件,代码如下: #ifndef _SYSTICK_H #define _SYSTICK_H #include stm32f10x.h void SysTick_Init(void); //void timeDecrement(void); void delay(__IO ui
[单片机]
STM32中需要了解并熟练应用I/O口的8种工作模式
  一、推挽输出:可以输出高、低电平,连接数字器件;推挽结构一般是指两个三极管分别受两个互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源决定。   推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。   二、开漏输出:输出端相当于三极管的集电极,要得到高电平状态需要上拉电阻才行。适合于做电流型的驱动,其吸收电流的能力相对强(一般20mA以内)。开漏形式的电路有以下几个特点:   1、利用外
[单片机]
<font color='red'>STM32</font>中需要了解并熟练应用I/O口的8种工作模式
STM32STM32最小系统及电路基本原理
最小系统为单片机工作的最低要求,不含外设控制,原理简单,分析最小系统是嵌入式入门的基础。 1 最小系统原理图 最小系统主要有电源,时钟,调试,复位,以及控制芯片五大部分组成。 2 电源系统 由LDO(Low Dropout Regulator)低压差线性稳压器将5V转换为3.3V,为主控芯片供电。 关于电平转换,可以查看从电平角度理解数字电路 3 时钟电路 晶振是由石英晶体组成的,石英晶体之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十
[单片机]
【<font color='red'>STM32</font>】<font color='red'>STM32</font>最小系统及电路基本原理
关于STM32外接4—16MHz晶振主频处理方法
由于STM32F10x库官方采用的是默认的外接8MHz晶振,因此造成很多用户也采用了8MHz的晶振,但是,8MHz的晶振不是必须的,其他频点的晶振也是可行的,只需要在库中做相应的修改就行。 在论坛上看到很多用户反映,使用外接12MHz的晶振,会造成很多的问题,如USART的波特率不正确,Systick走时不准等问题,在无论是在实际调试还是在软件模拟中都会发现这个情况,其实,这不能怪ST官方,我们必须肯定ST官方为方便用户开发所做的努力,下面我们就通过简单的三个步骤就可以让你随意的使用4—16MHz之内任何频点的晶振,我们以STM32F10x_StdPeriph_Lib_V3.4.0为例说明。 第一步,打开stm32f10x
[单片机]
STM32实例教程-DMA实验
在前面我们提到过 DMA,这一章我们就来学习 STM32F1 的DMA 使用。要实现的功能是:通过 K_UP 按键控制 DMA 串口 1 数据的传送,在传送过程中让 D2 指示灯不断闪烁,直到数据传送完成。D1 指示灯闪烁提示系统正常运行。学习时可以参考《STM32F10x 中文参考手册》-10 DMA 控制器(DMA)章节。 DMA 简介 DMA,全称是 Direct Memory Access,中文意思为直接存储器访问。DMA 可用于实现外设与存储器之间或者存储器与存储器之间数据传输的高效性。之所以称为高效, 是因为 DMA 传输数据移动过程无需 CPU 直接操作, 这样节省的 CPU 资源就可供其它操作使用。从硬件层面来
[单片机]
<font color='red'>STM32</font>实例教程-DMA实验
STM32 延时函数高级用法分析
一、使用场景 第一种情况,在使用普通 STM32 延迟函数,类似于 HAL_Delay(time),由于该函数是使用循环去判断及延时的,所以在执行该函数时整个程序会在此处等待定时器的中断服务函数修改参量使得循环判决条件不成立,从而继续程序的执行,同时也达到延迟时间的效果。由于使用的是系统的定时器进行延迟,所以时间相对准确。 第二种情况,当需要周期性的执行一个任务时,将这个函数放在某个定时器的中断服务函数里,设置好定时器的时间,完成时产生中断,从而进入中断服务函数执行该函数。此时,MCU 执行中断程序,只有更高优先级的中断才能打断当前执行的中断服务函数,进入更高优先级的中断服务函数去执行。需要等所有中断服务函数都执行完成,才
[单片机]
STM32的USARTx中u3_printf函数解析
我们在STM32中常常使用printf来将信息打印至PC端控制台上。但是有这样一种函数,它可以把数据以我们指定的格式装进字符串中——sprinft和vsprintf。 ⑴ sprintf函数使用的方式如下: ① 将多个参数以指定格式写入字符串 int a=1,b=2; char s ; sprintf(s, a=%d,b=%d ,1,2); puts(s); 输出结果:a=1,b=2 ② 错误使用:在函数封装中使用 void Myprintf(const char* fmt,...) // 传递个数不定的参数 { char s ; sprintf(s,fmt); // 出现错误 puts
[单片机]
<font color='red'>STM32</font>的USARTx中u3_printf函数解析
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved