单片机系统的故障重现设计与实现

发布者:RadiantBeauty最新更新时间:2018-02-09 来源: eefocus关键字:单片机系统  故障重现 手机看文章 扫描二维码
随时随地手机看文章

    电磁脉冲辐照效应实验方法

    电磁脉冲对电予系统的辐照效应实验方法,简单地说就是将被测电子系统置于电磁脉冲辐射场中,接受电磁脉冲的照射,研究被测系统在电磁脉冲照射下受干扰、损伤的情况。

    实验配置如图1所示。主要由吉赫横电磁波传输室(GTEM Cell)、Marx发生器、控制台和被试系统等组成。Marx发生器用于产生高电压,与GTEM室配合,在GTEM室内产生均匀电磁场。控制台主要由示波器、光接收机和Marx控制面板组成。光接收机和电场传感器组成模拟量光纤场测量系统,主要用于将辐射电磁场转换成电压信号;示波器用来显示电场波形;Marx控制面板用来控制Marx发生器的充放电操作和陡化间隙的调整。



34

    故障重现原理

    故障重现的概念

    计算机系统在电磁脉冲作用下可产生硬件损坏、数据采集误差增大、内存数据改变、程序跳转、重启动和死机等故障。这些故障现象是大量的、不同的计算机在不同环境、不同时间受干扰后产生的故障现象的集总。如果拿出任意一台计算机做实验,只能产生很少的几个故障现象,由于这些计算机没有自动检测功能,有的故障即使是发生了,也观察不到。如

    果连故障现象都观察不全,就无法找出故障出现的规律和原因,更谈不上进行防护技术研究。因此,很有必要设计一套专门用于电磁脉冲效应实验的计算机系统,该系统具有以下功能:

    ·自动检测并显示系统本身出现的故障;

    ·干扰时故障最容易出现;

    ·使出现故障的种类最多;

    ·具有故障重现功能。

    故障重现是指主动地采取一定的技术手段,使故障反复出现。想看哪种故障就能出现哪种故障,想让它出现儿次就出现几次。这与一般电路中采取有效措施抗干扰的设计思想截然不同。

    故障重现的条件

    故障重现并不是用计算机软件进行故障仿真,而是故障的真实再现。要使故障重现,除了辐射场的幅度要足够强外,被测系统还要具备必需的硬件电路和软件环境。软件环境是指干扰出现时控制功能电路工作的程序正在运行,即时间对准。例如,如果要考查电磁脉冲对A/D转换电路转换精度的影响,首先要有ADC,其次要保证照射时ADC正在工作。

    实现故障重现的技术手段

    对辐射场强度和硬件电路的要求比较容易实现,难点是保证时间对准。当然,有些故障的重现对时间对准要求很宽松,如死机和重启动,计算机几乎在运行任何程序时都有可能出现这两种故障现象。

    解决这一难点的方法是采取程序模块化和循环等待技术。程序模块化使每一种故障(效应)对应一个程序模块,想看哪种故障,就运行相应的程序模块;想让故障多次出现,就反复进行效应实验。循环等待技术是让计算机始终运行某一段或某一句程序,可大大提高干扰成功的概率,使故障最容易出现。

    系统组成及工作原理

    硬件组成

    本系统采用51系列单片机。为便于研究程序存储器的效应情况,选用内部不含EPROM的8031作为中央处理器,程序固化在外部程序存储器中,这里采用的是擦、写方便的E2PROM(2864或28C64)。由于8031内含CTC和SIO,不再另设外CTC和SIO。为使系统能够重现尽可能多的故障现象,采用的外设芯片还有:外部数据存储器(6264)和ADC(AD0809)。另外,增加4位数码管用于信息显示,显示数据由4个锁存器(74LS373)保存。上述硬件电路既完成一定的功能又是被试验对象。系统组成如图2所示。

34

    程序执行流程

    该系统软件共由8个程序模块组成:指示单片机重启动的程序模块;检查CTC运行情况的程序模块;串口通讯功能检查程序模块;判断外RAM内容是否改变及读写是否出错的程序模块;判断内RAM内容是否改变程序模块;检查A/D转换电路转换误差是否增大程序模块;判断外中断足否被误触发程序模块;显示E2PROM内容是否被改写的程序模块。

    系统的工作过程也就是上述8个程序模块的运行过程,它们是在执行开关K的控制下顺序执行的。图3给出了流程图。几乎每一种效应实验对应一个程序模块。由于硬件损坏故障与软件运行关系不大,而且故障现象明显,无需专门设置程序模块。重肩动效应实验可以工作在除指示单片机重启动的程序模块的任一程序模块。死机效应实验可以工作在任一程序模块,由于故障现象明显,无需检测程序。 故障重现及检测的具体实现不同的故障现象有不同的重现和检测方法。由于篇幅有限,只给出三种故障重现及检测的实现方法。

    外RAM效应

    这部分实验包括三部分:一是不进行读写操作时,检查外RAM内容是否被改写;二是检查读操作是否出错;三是检查写操作是否出错。

    第一部分实验中,RAM内容被改写是由于RAM芯片被干扰所致,只需编制检测程序。先在RAM的0000H~1FFFH单元写入同一数据("AA"),然后等待执行开关K的按下,等待期间进行冲击实验。冲击完毕,读出RAM内容并判断是否改变。

    第二、三部分实验,检查RAM的读写操作是否因干扰而出错。让持续时间只有微秒量级的干扰脉冲去干扰执行时间只有几个微秒的读写指令,这种事件发生的概率几乎为0。对于干扰源可以工作在重复工作方式的情况,可以使其在重复工作方式下工作,这无疑是一种不错的想法。但是,由于重复工作方式的重复频率并不能做得很高,最高只能达到1kHz左右,所以其效果并不明显。最有效的方法是使程序重复执行一条读或写指令,虽然两次读或写之间还有几条判断读或写入的数据是否正确的指令,但两次读或写之间的时间间隔也只有数十微秒量级,这就相当于让读写指令等着电磁脉冲来干扰,从而大大提高了被干扰的概率。

    第二、三部分程序编制开始时,为了使其更具代表性,对RAM的所有单元进行读或写,即先将RAM的0000H~1FFFH单元清0,然后使程序循环读这些单元,或向这些单元循环写入数据"AA",并实时检查读出或写入的数据是否正确。在实验中发现,第二、三部分实验出错的次数,比第一部分实验出现的次数还多。尽管采取了上述循环等待技术,但某条指令被干扰的可能性还是很小。多次实验不得其解,后来在读实验显示出错信息时检查RAM各单元的内容,发现每次都有一部分RAM单元的内容出错,而读操作出错不可能导致RAM内容改变,因此,并不是或不全是读写操作出错,而是由于RAM内容被改写后,误判为读或写出错。解决这一问题的方法是,使读写操作只对某一一固定的RAM单元进行,由于一个单元被改写的概率是所有单元被改写概率的l/2,这就大大降低了误警概率。

    串口SIO效应

    串口SIO效应实验主要是看串口通讯是否出错。要观察到这种故障现象,就必须让单片机运行串口通讯程序。由于51型单片机只有一个串口,而要使其进行通讯,最少需要两个串口,这就至少需要有两套单片机系统,这将使设备和实验复杂化。在认真研究串口工作原理后,终于找到了只用一个单片机模拟串口通讯的方案:把CPU的TXD和RXD短接,将TXD端发出的数据直接送入RXD进行接收,使单片机工作于自发自收状态,通过检查接收与发送的数据是否相等判断通讯是否正常。当然,仍需采用循环等待技术,使通讯循环进行,当运行正常时,在P1.1口产生脉冲信号,使红色LED亮。如果通汛出现异常,数码管将显示出错信息,并将LED熄灭。

 

    定时器CTC效

    为使CTC工作失误故障重现,可在主程序中加入允许CTC中断的指令,使程序运行时,CTC一直在工作,等待电磁脉冲来干扰。 定时器采用CPU内部定时器0,工作方式为方式1。编写CTC0的中断子程序,与软件计数器R0配合,在P1.1口产生一个方波信号,驱动LED闪亮。主程序等待K按下指令,等待期间进行干扰实验。如果LED闪亮异常,表明CTC工作不正常。以下为定时器0的中断子程序:

    实验结果

    在设计该单片机系统以前,曾用一单片机最小应用系统做效应实验,结果只能观察到死机现象。而将该系统用于效应实验后,观察到了硬件损坏、A/D转换误差增大、内存数据改变、程序跳转、死机、CTC工作失误、串口通讯出错和程序存储器E2PROM内容被改写等多种故障现象。通过大量、反复地实验,测出了各种故障出现的阈值,分析了故障出现的原因。

54

    图4是示波器记录下的串口RXD引脚上的正常信号和通讯出错时的干扰波形。图4表明,RXD上有很强的干扰信号,而且低电平被展宽了3~4倍。根据实验数据及串口工作原理,得出申行通讯出错的原因有两个:1.干扰使SIO电路工作失误,如串口控制寄存器SCON内容改变,发送或接收SBUF内容改变等,这些都可能引起接收数据和发送数据不符,从而使通讯出错;2.RXD线上的干扰信号使串行数据发生混乱,从而使接收数据出错。


关键字:单片机系统  故障重现 引用地址:单片机系统的故障重现设计与实现

上一篇:利用NAND Flash实现对嵌入式系统的远程更新
下一篇:基于ARM 的来电号码显示器的实现方法

推荐阅读最新更新时间:2024-03-16 15:54

SED1335在单片机系统中的设计与应用
1 引言 随着信息技术的发展,人们越来越频繁地面对各种各样的显示装置,其中液晶显示(LCD)是一种最有前景的显示装置,目前已广泛应用于移动通讯、仪器仪表、电子设备、家用电器等各方面。与传统显示模块相比,采用 SED1335LCD液晶驱动器和 320 240点阵式图形液晶显示模块,使显示信息量增大、操作简化、界面友好、外形美观,不仅可以采用数字形式显示信息数据,而且可以采用图形画面来显示。 2 SED1335控制器 SED1335是 SEIKO EPSON公司出品的一种高性能的液晶显示控制器。它具有较强的 I/O缓冲器,指令功能很丰富,并且四位数据并行发送,最大驱动能力为 640 256点阵。 SED1
[单片机]
SED1335在<font color='red'>单片机系统</font>中的设计与应用
PIC单片机系统定义字的含义解析
  在PIC芯片内有一特殊的系统定义字含有4个EPROM熔丝。它不是程序存贮器EPROM的组成部分(不包括在0.5K-2K的程序空间内)。其中两个熔丝用以选择四种振荡方式(RC、XT、HS、LP),另两个熔丝一个用来选择使能(enable)看门狗WDT,一个用来选择使能程序保密位。   用户可以在烧写OTP或窗口型芯片时,选择烧写这四个熔丝。详见第七章烧写工具介绍说明。对于腌膜芯片,则由生产厂根据客户需要在芯片生产过程中予以烧写。   §1.12.1 程序保密位(Protection Fuse)   当你选择将芯片的程序保密位熔丝熔断(写入0)后,程序存贮区ROM中的程序代码(12位宽)的高8位将被遮没。具体地说,就是当再
[单片机]
PIC<font color='red'>单片机系统</font>定义字的含义解析
“掉电”不能忽视 单片机系统为电路保护提供条件
通常,在数字钟、打铃仪、某些定时器和日历钟等类型的 单片机 系统中,当主电源 DC5V 失去时,我们称之为掉电。掉电之后,单片机会停止工作,时钟会停止往前走,这种结果在许多场合往往是不希望的,为了保证单片机在主电压失去时仍然能够保持运行,人们就利用干电池对单片机系统继续进行供电。 应该感谢 单片机 芯片的工程技术设计师,是他们首先提供了单片机系统能够顺利实施“掉电保护”的内部条件,这就是:单片机允许在电压低至 2V 甚至更加小一些的电压供电时。仍然可以保证其最基本的运行(对外部输入输出功能将会失效或者停止)。 电池在主电源失去时,对单片机的继续运行提供能源,此时的电池能源是非常宝贵的,往往都是以“uA” 级进行计算。而且还有一个不
[电源管理]
“掉电”不能忽视 <font color='red'>单片机系统</font>为电路保护提供条件
信息纽扣DS1991在51单片机系统中的应用
DS1991是Dallas公司的1-wire总线信息纽扣家庭中的一员,是一种加密存储器型信息纽扣。它内部集成了1Kbit是非易失性存储器及加密保护逻辑,封装于直径为16mm、厚约6mm的不锈钢外壳中,何种小巧、操作便捷,防潮、抗震、防灰尘,可在恶劣的环境中实现带密码保护的数据传送。 1 DS1991的特点   DS1991是一种很有特色的加密存储器型TM卡,为用户的保密数据提价节可靠的保护措施。DS1991内部有1152位的密码保护存储器区,512位的非密码保护存储器scratchpad。密码保护存储器被分为三个可独立操作的密钥子存储器(subkey),每区为384位,每个密钱子区都有自己的64位密码及64位的ID码,对密
[单片机]
信息纽扣DS1991在51<font color='red'>单片机系统</font>中的应用
密码访问器件X76F100在单片机系统中的应用
    摘要: 介绍IC卡用密码访问安全监控器件X76F100的使用特点和外形结构与封装,同时对器件密码读、密码写以及密码修改的工作过程作详细说明,最后给出一段AT89C51与其通信的程序实例。     关键词: X76F100 密码访问 编程 X76F100是一种密码访问安全监控器件,内部含有1个112×8位的保密数据阵列,对该阵列的访问由2个64位的读写密码来控制,密码与数据通过I2C总线接口完成输入输出。正常情况下,X76F1000提供最少为10万次的擦写期限和最少100年的数据保存使用。 1 器件的特点 *可编程64位读写密码保护; *重试计数寄存器允许8次密码试验,然后阵列清零; *
[工业控制]
闪存芯片KM29N32000TS在单片机系统中的应用
摘要:介绍32M位闪存芯片(Flash Memory)KM29N32000TS,并以87C552单片机为例介绍它在单片机系统中的硬件连接和软件编制方法。该芯片与单片机的硬件连接电路简单,可扩容能力强,易于编程,且体积小、容量大,具有很高的实用价值。 关键词:KM29N32000TS Flash存储器 单片机系统 在许多测量和测试应用系统中,如便携式仪器等其它电池供电系统,需要保证数据的可靠性和可用性,即使整个系统掉电,而所采集到的数据仍能长时间的保持不丢失。闪存技术的发燕尾服提供了这种可能性。闪存的非易失性非常优越,数据可保存长达10的。本文将介绍32M位闪存芯片KM29N32000TS及其在87C552单片机系统中的应用。
[应用]
利用Proteus虚拟开发技术进行Arduino单片机系统开发
1.前言 Arduino是一款便捷灵活、方便上手的开源电子原型平台,具有接口丰富、编程环境简便、自由度大与可拓展性强等优点.它基于AVR平台,对AVR库进行了二次编译封装,将复杂的单片机底层代码封装成简单实用的函数,使使用者不用关心单片机编程繁琐的细节,如寄存器、地址指针等基本不用管,从而大大降低了单片机系统开发难度,特别适合老师、学生和一些业余爱好者使用。 由于Arduino使用者一般都是那些对电路知识、电子技术及单片机技术等了解不深入的初学者,如何在Arduino开发过程中快速有效的提高他们的单片机系统开发能力及电子电路设计能力是一个需要迫切解决的问题。 Proteus的引入较好的解决了存在的问题。 P
[单片机]
利用Proteus虚拟开发技术进行Arduino<font color='red'>单片机系统</font>开发
智能型框架式断路器单片机系统的电磁兼容性分
智能型框架式断路器单片机系统的电磁兼容性分析 一、 简述   随着单片机技术的不断发展与完善,单片机已被广泛地应用于各行各业中,其应用程度和应用水平已逐渐成为衡量一个行业或一个部门技术水平的重要标志。框架式断路器做为低压配电系统的主开关也已突破传统的结构模式,在其保护和信息处理单元采用了单片机技术,典型产品有施耐德公司的M系列、美国GE公司的S系列、日本三菱公司的AE-SS系列、我国的DW45系列等。众所周知,框架式断路器对低压配电系统的安全、可靠运行起着至关重要的作用,而其单片机系统的电磁兼容性又是其安全、可靠、稳定运行的核心问题。以下对电磁兼容试验的目的、电磁干扰噪声对单片机系统的危害、单片机本身的硬件和软件的抗干
[模拟电子]
智能型框架式断路器<font color='red'>单片机系统</font>的电磁兼容性分
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved