基于STC12C5A60S2 单片机的植物智能精确补光系统研制

发布者:紫色小猫最新更新时间:2018-04-03 来源: eefocus关键字:STC12C5A60S2  单片机  智能精确  补光系统 手机看文章 扫描二维码
随时随地手机看文章

    前 言

    在农作物生长过程中,光照条件对农作物的生长速度、产量以及品质都具有重要的影响[1,2]。现阶段我国大部分设施农业仍依靠白炽灯、卤钨灯、高压水银荧光灯、高压钠灯等作为光源对植物进行补光[3 - 4],这些传统的补光方法存在着光谱匹配不理想[5 - 6]、光能利用率低、未考虑其他环境因素的影响等缺点,其能耗过高导致难以在实际生产中形成较高投入产出比。随着半导体技术的发展,采用LED冷光源作为补光灯光源的方案也已被提出[7],可在一定程度解决上述补光光源的问题。但由于大部分研发方案和产品仍采用定光强、定光质的补光方式,未考虑不同植物不同阶段需光量的差异,造成补光不足和补光过度并存的现象,仍未能真正意义上解决低能耗精准化补光的问题[8]。


    针对以上问题,本文研发了一种智能、精确、节能的补光系统,该系统充分考虑不同植物在不同阶段不同环境对补光需光量的影响。基于分波段光强检测技术、智能控制技术等现代电子信息技术,采用STC12C5A60S2 单片机作为核心处理器[9],PT4115 为LED 驱动模块[10],根据温度和光强检测结果,实现对各类植物在合适环境下按需分波长定量补光。在满足其生长所需光照前提下,最大程度的提高输出光能的利用率,具有误差低、响应速度快、成本低、维护简单等特点。

    1 系统整体设计

    本系统采用模块化设计,分为电源模块、检测模块、控制模块、补光模块、用户交互模块,总体结构如图1 所示。其中,电源模块采用太阳能供电,分别提供5V,1 2V 两种供电电压,为整个系统供电; 智能控制模应用STC 系列单片机为核心,根据系统采集到的数据、设置阈值,实现对应PWM 控制信号的占空比计算和两路PWM 控制信号输出; 检测模块分波段检测红、蓝光强和实时温度,并将检测信号进行滤波、放大后传入单片机,实现相关环境信息的检测; 补光模块采用两路带有PWM 电流控制功能的恒流驱动电路,分别控制红、蓝光LED补光阵列灯的亮度,从而实现定量精确补光; 用户交互模块采用液晶屏完成检测结果显示,键盘实现按需阈值修改等功能,完成阈值修改与设置,有效提高系统使用的方便性、扩展性。

    2 硬件设计

    2. 1 电源模块

    本系统电源模块由太阳能电池板、蓄电池和控制电路组成,整个系统利用太阳能电池供电,原理图如图2 所示。其中,控制电路的输入端与太阳能电池连接,输入电压通过LM317 及其外围标准电路对12V蓄电池充电,蓄电池为整个系统供电。蓄电池输出端利用MIC29302 稳压变压模块输出12V 稳压电源信号,并调整匹配电阻产生5V 稳压电源信号,从而提供本系统需要12V 和5V 两个供电电源。其中,单片机、检测模块以及用户交互模块均使用5V 电源供电,LED 补光模块采用12V 电源供电。

5

    图1、电源模块原理图

    2. 2 控制模块

    控制模块选用STC12C5A60S2 单片机作为核心处理器,采用5V 电源供电,具有8 路10 位A/D 接口、2 路PWM 输出口、Flash 存储空间56K、静态存取内存1 280B、可编程只读存储器1K,完成节点任务调度、数据采集、智能管理、控制信号输出、阈值的调整、数据转储等工作,电路如图3 所示。其中,P0 口连接液晶屏的8 路数据口; P1 口负责与采样信号连接,P1. 0 接入温度检测信号、P1. 1 接入红光检测信号、P1. 2 接入蓝光检测信号,从而完成对传感器监测数据的采集;P2 口连接4 × 4 矩阵键盘,P3. 0,P3. 1 用于单片机与串口连接的数据读写线,完成程序的下载; P3. 2 ~ P3.7 位液晶控制端; P4. 2,P4. 3 为单片机PWM 控制端输出口,其根据单片机计算出与两波段所需补光量对应的PWM 信号占空比,输出PWM 信号对LED 灯组的亮度进行控制。

6

     

    图:控制模块电路设计

    2. 3 检测模块

    检测模块利用光照传感器、温度传感器实时检测设施内部光照强度和温度,并将采集数据提供给单片机进行处理,原理图如图4 所示。其中,温度检测模块由温度传感器18B20 及其标准调理电路组成,数据线接入单片机P1. 0 口,实现对温度的采集。光照检测包括红光光强检测和蓝光光强检测,采用波长范围在400 ~ 500nm 的蓝光2BU6 硅光电池和波长范围600 ~ 700nm 的红光2BU6 硅光电池作为检测元件。采用4 路运算放大器LM324 设计运算放大器将硅光电池的微弱模拟信号分别进行转换和放大,最终将模拟信号接入单片机P1. 1,P1. 2 端口进行A/D 转换,从而实现分波段光强检测。

3

    图、检测模块原理图

    2. 4 补光模块

    补光模块包括LED 灯组及其驱动电路,驱动电路采用PT4115 驱动模块电路,红光和蓝光两个模块独立工作,原理图如图5 所示。其中,LED 灯组采用额定功率1W、中心波长为660nm 的窄带红光LED 阵列和中心波长为450nm 的窄带蓝光LED 阵列。由单片机输出的两路PWM 信号分别与红蓝光两路PT4115的DIM 控制端相连,其中红光驱动芯片与P4. 2 产生的PWM 信号接通,蓝光则与P4. 3 产生的PWM 信号接通。利用PWM 的信号控制驱动芯片PT4115 的输出电流,由此实现LED 灯组的定量补光。

1

    图、补光模块原理图

    2. 5 用户交互模块

    用户交互模块主要包括液晶显示屏和键盘两部分,其中显示屏采用OCM12864 - 3 液晶屏,可实现系统数据的查询显示; 而键盘采用4 × 4 矩阵键盘,实现对系统相关数据的设定及改变。

    3 软件设计

    该系统软件主要包括传感器解析函数、数据管理与参数设定程序、PWM 信号控制程序和显示程序,实现3 类参数设置、环境因子采集以及对受控灯组的自动控制功能,软件流程如图6 所示。系统工作时,首先需要对温度,红蓝光强阈值进行设置,温度传感器周期对设施内温度监测,判断温度是否超出不利于光合作用的阈值范围,超出则关断 LED 补光灯组。当温度在所设阈值范围内,再分别对红、蓝光进行光强检测,实际光强在阈值之内时,系统进入自动定量补光状态,根据所设阈值与实际值之差计算实际需光量,进而再根据与实际需光量对应的两路PWM 控制信号的占空比,分别产生对应的PWM 信号,达到控制LED 灯的亮度对植物实施精确补光的目的。

    4 运行结果分析

    该系统充分考虑了植物补光时的各种影响因素,通过对各因素的监测、设置、数据管理和决策程序,精确计算植物所需光照与实际光照总体差值,采用均值方式计算每个LED 的输出光强; 基于LED 驱动电流和输出光强的关系式,系统就可以通过对PWM 输出电流的控制,从而实现对补光量的控制。该系统已于2010 年在西北农林科技大学甜瓜基地投入试用,实现了设计方案中各类部分功能,可长期有效实现定量精确补光,图7 为设备原型界面。

     

1

    图、软件流程图

    5 结论

    本文研发了一种基于STC12C5A60S2 单片机的植物智能精确补光系统。该系统利用太阳能供电,根据温度、光照传感器监测结果,通过核心处理器STC12C5A60S2 利用PWM 信号,控制特定波长的红、蓝光两路LED 灯组驱动电流,从而控制光源亮度,解决现有补光设备的不足,实现了对农作物的智能化、精确化补光。系统试验证明其具有良好的稳定性,可满足在不同生长阶段对不同植物进行智能化、精确化的补光要求,作物产品产量、品质提高,耗能明显降低。同时,具有误差低、响应速度快、使用方便、部署灵活、成本低廉、维护简单等特点。


关键字:STC12C5A60S2  单片机  智能精确  补光系统 引用地址:基于STC12C5A60S2 单片机的植物智能精确补光系统研制

上一篇:基于MSP430F12x2的SPI数据存储器扩展分析
下一篇:基于MGLS12864与SPCE061A单片机的硬件接口电路设计

推荐阅读最新更新时间:2024-03-16 15:58

用STC12C5412AD单片机构成的集成实验板电路
  STC12C5412AD单片机,是一款增强型8051标准的51系列的单片机。速度比普通8051快12倍,可以在家庭中的计算机编程,无需仿真器。      STC12C5412AD有8通道的10位AD转换器,可以检测模拟信号,不用AD时可以当作数字输入输出口用。还有许多优于8051的性能。其指令与普通8051指令代码完全兼容,但执行速度大幅提升。   用其构成的示教学习板电路原理图如下图所示。   本电路的外围电路有:      (1)简单的发声电路:讯响器。      (2)麦克放大电路和半波 整流电路 。      (3)4个 数码管 动态显示电路。      (4)15个 发光二极管 ,其中7个发光 二极管 与数码管的
[单片机]
用STC12C5412AD<font color='red'>单片机</font>构成的集成实验板电路
PIC单片机存储器拓展
生活中感应水龙头越发的常见了,公共场所使用也更加的频繁,感应水龙头,顾名思义,就是通过红外线感应出水。那么感应水龙头的功能是通过什么实现的呢? 感应水龙头,是通过红外线反射原理,当人体的手放在水龙头的红外线区域内,红外线发射管发出的红外线由于人体手的摭挡反射到红外线接收管,通过集成线路内的微电脑处理后的信号发送给脉冲电磁阀,电磁阀接受信号后按指定的指令打开阀芯来控制水龙头出水;当人体的手离开红外线感应范围,电磁阀没有接受到信号,电磁阀阀芯则通过内部的弹簧进行复位来控制水龙头的关水。 感应水龙头供电检测的功能实现主要通过英锐恩开发芯片PIC16F684。就是通过芯片程序检测感应水龙头供电情况。当芯片检测电池没有正常供电时,芯
[单片机]
NEC发布功耗仅1.8mW/MIPS的16位MCU
NEC Electronics America公司的16位78KOR系列闪存微控制器(MCUs)的功耗仅为1.8mW/MIPS,其功率/性能比为该公司8位78K0 MCU的6倍。该器件是针对家用电器和工业系统市场设计的。 该产品由封装引脚数从64到100的30个器件组成,闪存容量为64KB到256KB,为工程技术人员提供了更多的设计选择。 该产品采用三级管线技术,可实现高速处理,能达到最高13MIPS的处理速度。该系列产品还提供了热复位功能、电压检测电路、片上振荡器、日历定时器和低EMI功能。其16位78K0R指令集包括了8位78K0指令集,保持了与78K0器件及大部分78K0R产品的兼容性。由于采用了平滑的移植技术,消费者可
[焦点新闻]
BCD码借用十六进制形式表示引出的单片机存储数据
BCD码借用十六进制形式表示引出的单片机存储数据,数据数制,数据类型,数据编码分析 单片机存储数据都是二进制存储的。 数据数制:二进制、十进制、十六进制等。 数据类型:字符类型(一个字节)、整型(两个字节)、浮点类型(四个字节)。有无符号。 数据编码:8421码,ASCII码,LED等显示字形编码。 BCD码借用十六进制形式表示,只是意义不同24H写到寄存器里面也是24H,读出的也是24H,只不过代表的是十进制的24,而不是十进制的36.书写形式和十六进制一样,但是代表的十进制数就不一样了 对类似DS1302中寄存器的操作,虽然存放的数据是以BCD编码的意义,但是对这类寄存器的读写操作也是以二进制或者以十六
[单片机]
PIC单片机端口电平变化中断使用必须注意的问题
PORTB口状态变化中断标志的清除必须: 1)读一次PORTB口,消除产生中断标志的硬件条件; 2)清除RBIF位 参考汇编指令 movf PORTB,w bcf INTCON,RBIF // 让PIC作好XOR准备 B口电平变化中断主要靠内部 硬件管脚 与对应B口管脚的电平不同而引发中断 MOVF PORTB,F指令 即读B口管脚电平值将使内部的 硬件管脚 与外部的硬件管脚同电平,这时认为B口电平未变化。 单片机睡眠后,当B口电平发生变化,即与内部的 硬件管脚 相异,将引发MCU中断。 注:电平变化中断与边沿中断不同,中断处理退出时也应再用MOVF PORTB,F指令读一次B口管脚电平值。 // 在pi
[单片机]
32位TriCore™ 微控制器设计套件【英飞凌】
2011年3月3日,德国纽必堡和纽伦堡讯——英飞凌科技股份公司近日在2011年世界嵌入式大会上宣布推出一个完整的设计套件,可使基于其领先的32位TriCore™ 微控制器的嵌入式设计符合IEC 61508的功能性安全要求。通过充分利用其在汽车系统安全领域的丰富经验,英飞凌进一步开发出PRO-SIL™ 安全产品,旨在以其基于TriCore产品的高级别安全解决方案来满足不断增长的工业市场需求。在世界嵌入式大会上展出的该设计套件包括SafeTcore测试库、由Hitex公司开发的称为SafeTkit的基于TriCore的完整安全套件以及丰富的软件与文档资源。 按照IEC 61508标准的规定,不同SIL(安全完整性等级)等级规
[嵌入式]
基于MSP430单片机实现ARINC429总线通讯的硬件设计
ARINC429航空通讯总线是一种常用的惯导系统通讯总线。由于该总线的功能相对独立,航空电子系统逐步走向综合,各子系统之间的数据通讯变得更加频繁。因此,研制一种基于ARINC429总线标准多种导航检测信号的手持设备,就可以为雷达导航测试人员提供很多方便。 1 ARINC429总线简介 ARINC429总线标准又称为Mark33数字信息传输系统,由美国航空无线电公司(ARINC)颁布实施。我国在航空电子设备(诸如GPS、惯导系统、电子飞行仪表)中也大量采用了ARINC429规范与外设进行通讯。此总线允许一个发送器和最多20个接收器进行一对单向、差分耦合、双绞屏蔽线信号传输。该标准的数据字分25 bits和32bits两种,以双级归零码
[单片机]
基于MSP430<font color='red'>单片机</font>实现ARINC429总线通讯的硬件设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved