arm-linux-ld命令

发布者:SereneSunset最新更新时间:2016-01-19 来源: eefocus关键字:arm  inux  ld命令 手机看文章 扫描二维码
随时随地手机看文章
我们对每个c或者汇编文件进行单独编译,但是不去连接,生成很多.o 的文件,这些.o文件首先是分散的,我们首先要考虑的如何组合起来;其次,这些.o文件存在相互调用的关系;再者,我们最后生成的bin文件是要在硬件中运行的,每一部分放在什么地址都要有仔细的说明。我觉得在写makefile的时候,最为重要的就是ld的理解,下面说说我的经验:

 

首先,要确定我们的程序用没有用到标准的c库,或者一些系统的库文件,这些一般是在操作系统之上开发要注意的问题,这里并不多说,熟悉在Linux编程的人,基本上都会用ld命令;这里,我们从头开始,直接进行汇编语言的连接。

 

我们写一个汇编程序,控制GPIO,从而控制外接的LED,代码如下;

 

   .text

.global _start

_start:

    LDR R0,=0x56000010 @GPBCON寄存器
   
    MOV R1,# 0x00000400
    str R1,[R0]
   
    LDR R0,=0x56000014
    MOV R1,#0x00000000
   
    STR R1,[R0]
   
    MAIN_LOOP:
            B MAIN_LOOP

 

代码很简单,就是一个对io口进行设置然后写数据。我们看它是如何编译的,注意我们这里使用的不是arm-linux-gcc而是arm-elf-gcc,二者之间没有什么比较大的区别,arm-linux-gcc可能包含更多的库文件,在命令行的编译上面是没有区别。我们来看是如何编译的:

       arm-elf-gcc -g -c -o led_On.o led_On.s  首先纯编译不连接

       arm-elf-ld  -Ttext 0x00000000 -g led_On.o -o led_on_elf

       用Ttext指明我们程序存储的地方,这里生成的是elf文件,还不是我们真正的bin,但是可以借助一些工具可以进行调试。然后:

       arm-elf-objcopy -O binary -S led_on_elf led_on.bin  

生成bin文件。

 

-T选项是ld命令中比较重要的一个选项,可以用它直接指明代码的代码段、数据段,对于复杂的连接,可以专门写一个脚本来告诉编译器如何连接。

 

    -Ttext   addr

    -Tdata  addr

    -Tbss     addr

 

arm-elf-ld  -Ttext 0x00000000 -g led_On.o -o led_on_elf  ,运行地址为0x00000000,由于没有指明数据段和bss,他们会默认的依次放在后面。相同的代码不同的Ttext,你可以对比一下他们之间会变的差异,ld会自动调整跳转的地址。

 

第二个概念:section,section可以理解成一块,例如像c里面的一个子函数,就是一个section,链接器ld把object文件中的每个section都作为一个整体,为其分配运行的地址(memory layout),这个过程就是重定位(relocation);最后把所有目标文件合并为一个目标文件。

 

链接通过一个linker script来控制,这个脚本描述了输入文件的sections到输出文件的映射,以及输出文件的memory layout。

因此,linker总会使用一个linker script,如果不特别指定,则使用默认的script;可以使用‘-T’命令行选项来指定一个linker script。

 

 

*映像文件的输入段与输出段

linker把多个输入文件合并为一个输出文件。输出文件和输入文件都是目标文件(object file),输出文件通常被称为可执行文件(executable)。

每个目标文件都有一系列section,输入文件的section称为input section,输出文件的section则称为output section。

一个section可以是loadable的,即输出文件运行时需要将这样的section加载到memory(类似于RO&RW段);也可以是 allocatable的,这样的section没有任何内容,某些时候用0对相应的memory区域进行初始化(类似于ZI段);如果一个 section既非loadable也非allocatable,则它通常包含的是调试信息。

每个loadable或 allocatable的output section都有两个地址,一是VMA(virtual memory address),是该section的运行时域地址;二是LMA(load memory address),是该section的加载时域地址。

可以通过objdump工具附加'-h'选项来查看目标文件中的sections。

 

*简单的Linker script

(1) SECTIONS命令:

The SECTIONS command tells the linker how to map input sections into output sections, and how to place the output sections in memory.

命令格式如下:

SECTIONS

{

sections-command

sections-command

......

}

其中sections-command可以是ENTRY命令,符号赋值,输出段描述,也可以是overlay描述。

(2) 地址计数器‘.’(location counter):

该符号只能用于SECTIONS命令内部,初始值为‘0’,可以对该符号进行赋值,也可以使用该符号进行计算或赋值给其他符号。它会自动根据SECTIONS命令内部所描述的输出段的大小来计算当前的地址。

(3) 输出段描述(output section description):

前面提到在SECTIONS命令中可以作输出段描述,描述的格式如下:

section [address] [(type)] : [AT(lma)]

{

output-section-command

output-section-command

...

} [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]

很多附加选项是用不到的。其中的output-section-command又可以是符号赋值,输入段描述,要直接包含的数据值,或者某一特定的输出段关键字。

 


*linker script 实例

==============================

OUTPUT_ARCH(arm)

ENTRY(_start)

SECTIONS {

    . = 0xa3f00000;

    __boot_start = .;

    .start ALIGN(4) : {

        *(.text.start)

    }


    .setup ALIGN(4) : {

        setup_block = .;

        *(.setup)

        setup_block_end = .;

    }


    .text ALIGN(4) : {

        *(.text)

    }


    .rodata ALIGN(4) : {

        *(.rodata)

    }

    .data ALIGN(4) : {

        *(.data)

    }


    .got ALIGN(4) : {

        *(.got)

    }

    __boot_end = .;


    .bss ALIGN(16) : {

        bss_start = .;

        *(.bss)

        *(COMMON)

        bss_end = .;

    }


    .comment ALIGN(16) : {

        *(.comment)

    }

    stack_point = __boot_start + 0x00100000;

    loader_size = __boot_end - __boot_start;

    setup_size = setup_block_end - setup_block;

}

=============================  

在SECTIONS命令中的类似于下面的描述结构就是输出段描述:

.start ALIGN(4) : {

    *(.text.start)

}

.start 为output section name,ALIGN(4)返回一个基于location counter(.)的4字节对齐的地址值。*(.text.start)是输入段描述,*为通配符,意思是把所有被链接的object文件中的.text.start段都链接进这个名为.start的输出段。

源文件中所标识的section及其属性实际上就是对输入段的描述,例如.text.start输入段在源文件start.S中的代码如下:

.section .text.start

.global _start

_start :

    b start

 

 

arm-elf-ld -Ttimer.lds -o timer_elf header .o

这里就必须存在一个timer.lds的文件。

 

对于.lds文件,它定义了整个程序编译之后的连接过程,决定了一个可执行程序的各个段的存储位置。虽然现在我还没怎么用它,但感觉还是挺重要的,有必要了解一下。

先看一下GNU官方网站上对.lds文件形式的完整描述:

 

SECTIONS {
...
secname start BLOCK(align) (NOLOAD) : AT ( ldadr )
  { contents } >region :phdr =fill
...
}

 

secname和contents是必须的,其他的都是可选的。下面挑几个常用的看看:

1、secname:段名

2、contents:决定哪些内容放在本段,可以是整个目标文件,也可以是目标文件中的某段(代码段、数据段等)

3、start:本段连接(运行)的地址,如果没有使用AT(ldadr),本段存储的地址也是start。GNU网站上说start可以用任意一种描述地址的符号来描述。

4、AT(ldadr):定义本段存储(加载)的地址。

 


SECTIONS {
firtst 0x00000000 : { head.o init.o }
second 0x30000000 : AT(4096) { main.o }
}

 

    以上,head.o放在0x00000000地址开始处,init.o放在head.o后面,他们的运行地址也是0x00000000,即连接和存储地址相同(没有AT指定);main.o放在4096(0x1000,是AT指定的,存储地址)开始处,但是它的运行地址在0x30000000,运行之前需要从0x1000(加载处)复制到0x30000000(运行处),此过程也就用到了读取Nand flash。

 

这就是存储地址和连接(运行)地址的不同,称为加载时域和运行时域,可以在.lds连接脚本文件中分别指定。

编写好的.lds文件,在用arm-linux-ld连接命令时带-Tfilename来调用执行,如
arm-linux-ld –Tnand.lds x.o y.o –o xy.o。也用-Ttext参数直接指定连接地址,如
arm-linux-ld –Ttext 0x30000000 x.o y.o –o xy.o。

 

既然程序有了两种地址,就涉及到一些跳转指令的区别,这里正好写下来,以后万一忘记了也可查看,以前不少东西没记下来现在忘得差不多了。

ARM汇编中,常有两种跳转方法:b跳转指令、ldr指令向PC赋值。

我自己经过归纳如下:

 

b step1 :b跳转指令是相对跳转,依赖当前PC的值,偏移量是通过该指令本身的bit[23:0]算出来的,这使得使用b指令的程序不依赖于要跳到的代码的位置,只看指令本身。

 

ldr pc, =step1 :该指令是从内存中的某个位置(step1)读出数据并赋给PC,同样依赖当前PC的值,但是偏移量是那个位置(step1)的连接地址(运行时的地址),所以可以用它实现从Flash到RAM的程序跳转。

 

此外,有必要回味一下adr伪指令,U-boot中那段relocate代码就是通过adr实现当前程序是在RAM中还是flash中。仍然用我当时的注释

 

  adr r0, _start

 

  ldr r1, _TEXT_BASE

    cmp r0, r1

 

   下面,结合u-boot.lds看看一个正式的连接脚本文件。这个文件的基本功能还能看明白,虽然上面分析了好多,但其中那些GNU风格的符号还是着实让我感到迷惑。

 

OUTPUT_FORMAT("elf32­littlearm", "elf32­littlearm", "elf32­littlearm")
  ;指定输出可执行文件是elf格式,32位ARM指令,小端
OUTPUT_ARCH(arm)
  ;指定输出可执行文件的平台为ARM
ENTRY(_start)
  ;指定输出可执行文件的起始代码段为_start.
SECTIONS
{
        . = 0x00000000 ; 从0x0位置开始
        . = ALIGN(4) ; 代码以4字节对齐
        .text : ;指定代码段
        {
          cpu/arm920t/start.o (.text) ; 代码的第一个代码部分
          *(.text) ;其它代码部分
        }
        . = ALIGN(4)
        .rodata : { *(.rodata) } ;指定只读数据段
        . = ALIGN(4);
        .data : { *(.data) } ;指定读/写数据段
        . = ALIGN(4);
        .got : { *(.got) } ;指定got段, got段式是uboot自定义的一个段, 非标准段
        __u_boot_cmd_start = . ;把__u_boot_cmd_start赋值为当前位置, 即起始位置
        .u_boot_cmd : { *(.u_boot_cmd) } ;指定u_boot_cmd段, uboot把所有的uboot命令放在该段.
        __u_boot_cmd_end = .;把__u_boot_cmd_end赋值为当前位置,即结束位置
        . = ALIGN(4);
        __bss_start = .; 把__bss_start赋值为当前位置,即bss段的开始位置
        .bss : { *(.bss) }; 指定bss段
        _end = .; 把_end赋值为当前位置,即bss段的结束位置
}


关键字:arm  inux  ld命令 引用地址:arm-linux-ld命令

上一篇:TQ2440的FCLK,HCLK,PCLK,UCLK时钟频率设置
下一篇:STM32F103和STM32F107差别浅谈

推荐阅读最新更新时间:2024-03-16 14:44

基于ARM的嵌入式航空拖靶高度控制器设计
0 引言 航空拖靶是一种由飞机拖曳飞行的特殊的无人飞行器,一套完整的拖靶系统主要包括拖带飞机、收放缆装置、拖缆和拖靶。其中拖带飞机一般为有人或无人驾驶飞机,收放缆装置一般为挂装在飞机上的电动或气动式绞车,拖缆是通过绞车收放的一根长约几千米而直径只有几毫米的钢缆,拖靶多为外形类似导弹的无动力飞行器,由拖缆牵引飞行。主要用途是模拟敌方来袭的导弹类目标,为己方对空导弹、火炮等防空武器系统试验或训练提供模拟目标。 随着技术的进步,现代反舰导弹多采取“超低空掠海飞行”的突防方式。与之相应,20世纪80年代以来,用于模拟反舰导弹类目标的航空拖靶,也向着这一方向快速发展。而这类拖靶都要装有高度控制器,才能实现模拟导弹的超低空掠海定高飞行能
[单片机]
基于<font color='red'>ARM</font>的嵌入式航空拖靶高度控制器设计
ARM指令详解
算术和逻辑指令 ADC : 带进位的加法 (Addition with Carry) ADC{条件}{S} , , dest = op_1 + op_2 + carry ADC 将把两个操作数加起来,并把结果放置到目的寄存器中。它使用一个进位标志位,这样就可以做比 32 位大的加法。下列例子将加两个 128 位的数。 128 位结果: 寄存器 0、1、2、和 3 第一个 128 位数: 寄存器 4、5、6、和 7 第二个 128 位数: 寄存器 8、9、10、和 11。 ADDS R0, R4, R8 ; 加低端的字 ADCS R1, R5, R9
[单片机]
Nvidia确认ARM版Surface使用了Tegra芯片
    6月20日消息,微软于昨日正式发布了两款Surface系列平板电脑, 其中Windows 8 Pro版配备的是22nm构架的英特尔Ivy Bridge芯片。而另一款经由Nvidia的确认,使用了Tegra芯片。     Nvidia公布的一段简短公告确认,Windows 8 RT版Surface配备了Tegra芯片,但并未指明具体是哪一款芯片。根据猜测,Surface使用的可能是四核Tegra 3 KAI平台,或者是许多Android设备将会使用的Tegra 3+。   目前,大多数WP设备所使用的都是高通芯片,例如Lumia 900,微软此举可以算作是一个重大的改变。Nvidia的四核芯片在性能和节能方面都十分出色,但目
[手机便携]
ARM的文本框控件
一、实验目的 学习文本框控件的使用。掌握以二进制形式打开并读取文件的方法。把一个二进制文件 中的数字的内容在文本框中显示出来。相应键盘消息,实现文本框的编辑。掌握如何写入二 进制文件把文本框修改的结果写入文件。 二、实验内容 学习文本框控件的使用,把一个二进制文件中的数字的内容在文本框中显示出来,编辑 文本框,可以改变文本框的内容,并可以保存到文件,系统掉电以后,文件内容不丢失。 三、预备知识 1、用ARM SDT 2.5 集成开发环境,编写和调试程序的基本过程。 2、基于操作系统的应用程序的框架结构。 3、会使用Source Insight 3 编辑C 语言源程序 4、会使用消息循环响应键盘消息 5、操作系统的文件操作的基本过程
[单片机]
<font color='red'>ARM</font>的文本框控件
基于ARM的微伏信号在线监测系统设计
1 引言 在线监测系统中,待测信号幅值在50μV左右,而背景噪声幅值在50mV以上,用一般的采集和测量系统无法准确检测该信号。针对被背景噪声覆盖的微小信号,采用滤波降噪和差分放大手段,提高信噪比,保证待测信号能被准确采集;采用基于ARM核的32位微处理芯片S3C44B0X和基于μClinux操作系统的嵌入式图形用户界面MicroWindows,完成实时显示测量结果和实现故障自动报警,同时具有体积小、功耗低、操作灵活的特点,为实现微伏信号在线监测功能提供了一种良好的解决方案。 2 系统硬件设计 整个微伏信号在线监测系统硬件主要分为两个部分,即前置放大电路和基于ARM的数据采集与显示电路。 2.1 前置放大电路 待测信
[单片机]
基于<font color='red'>ARM</font>的微伏信号在线监测系统设计
英伟达400亿英镑强攻arm,已进入谈判阶段
据外媒报道,英伟达将以400亿英镑(按当前汇率为524亿美元)的价格收购ARM。目前英伟达与ARM谈判已经进入独家谈判阶段,整体收购将在今年夏末完成。 芯谋研究首席分析师顾文军昨晚在其朋友圈第一时间发了该外媒报道的截图,并附上了四个问题:一是收购最终能否被批准?二是ARM中国何去何从?三是其他ARM客户怎么办?四是中国芯片设计公司怎么想? 这几个问题,同样是业界对ARM被英伟达收购最为关心的焦点。 消息人士称,ARM于今年4月被挂牌询价,ARM的持有方软银集团对苹果、三星、富士康、台积电、高通等进行了询问。关于英伟达参与竞购ARM的消息在7月中旬被爆出,随着时间的推移,此前曾被爆出的买家包括苹果、三星等逐一被排除
[嵌入式]
英伟达400亿英镑强攻<font color='red'>arm</font>,已进入谈判阶段
基于ARM Cortex-M3的嵌入式网络播放系统
  随着网络应用的普及,为普通嵌入式系统增加网络功能,能更好满足消费者对网络资源的需求。这里采用基于ARM Cortex-M3的微控制器LM3S1138实现一种具备网络功能的播放终端系统,该系统不仅具有良好的播放效果,还可从网络音乐服务器上点播音乐并实时播放。   1 网络播放系统的设计方案   该网络播放系统由服务器、用户终端和音响设备组成。其中,服务器通过以太网提供音乐资源,用户终端通过网络下载音频数据再实现音频解码,音响设备实现音乐播放。图1给出该系统设计框图。   该系统设计采用基于ARM Cortex-M3的控制器LM3Sll38作为主控制器。该控制器改进了代码密度,减少中断延时,实现Thumb-2指令集,并具
[单片机]
ARM引起的行业大裂变(二)
下篇:迎接产业变革   x86服务器芯片市场正处在暴风雨来临之前的平静,伴随着ARM凭借低功耗从低端潜入、IBM借助OpenPOWER联盟从高端打压,x86服务器芯片市场必将风浪四起。或许,作为x86芯片市场“带头大哥”的英特尔,是时候出来应战了。   就IT产业而论,PC之所以颠覆了小型机,是因为PC能够将计算技术扩散或者说普及得更远。而新一代主导技术“移动互联网+云计算”则将云计算强大的计算能力通过智能终端扩散到无线网络所能覆盖到的区域,因而具有PC难以比拟的扩散能力。平板电脑和智能手机取代PC,主导个人计算市场也就不足为奇了。   ARM开放内核的商业模式正好顺应了“移动互联网+云计算”这一产业发展趋势,因而促成了智能
[模拟电子]
<font color='red'>ARM</font>引起的行业大裂变(二)
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved