首先,要确定我们的程序用没有用到标准的c库,或者一些系统的库文件,这些一般是在操作系统之上开发要注意的问题,这里并不多说,熟悉在Linux编程的人,基本上都会用ld命令;这里,我们从头开始,直接进行汇编语言的连接。
我们写一个汇编程序,控制GPIO,从而控制外接的LED,代码如下;
.global _start
_start:
代码很简单,就是一个对io口进行设置然后写数据。我们看它是如何编译的,注意我们这里使用的不是arm-linux-gcc而是arm-elf-gcc,二者之间没有什么比较大的区别,arm-linux-gcc可能包含更多的库文件,在命令行的编译上面是没有区别。我们来看是如何编译的:
生成bin文件。
-T选项是ld命令中比较重要的一个选项,可以用它直接指明代码的代码段、数据段,对于复杂的连接,可以专门写一个脚本来告诉编译器如何连接。
arm-elf-ld
第二个概念:section,section可以理解成一块,例如像c里面的一个子函数,就是一个section,链接器ld把object文件中的每个section都作为一个整体,为其分配运行的地址(memory layout),这个过程就是重定位(relocation);最后把所有目标文件合并为一个目标文件。
链接通过一个linker script来控制,这个脚本描述了输入文件的sections到输出文件的映射,以及输出文件的memory layout。
因此,linker总会使用一个linker script,如果不特别指定,则使用默认的script;可以使用‘-T’命令行选项来指定一个linker script。
*映像文件的输入段与输出段
linker把多个输入文件合并为一个输出文件。输出文件和输入文件都是目标文件(object file),输出文件通常被称为可执行文件(executable)。
每个目标文件都有一系列section,输入文件的section称为input section,输出文件的section则称为output section。
一个section可以是loadable的,即输出文件运行时需要将这样的section加载到memory(类似于RO&RW段);也可以是 allocatable的,这样的section没有任何内容,某些时候用0对相应的memory区域进行初始化(类似于ZI段);如果一个 section既非loadable也非allocatable,则它通常包含的是调试信息。
每个loadable或 allocatable的output section都有两个地址,一是VMA(virtual memory address),是该section的运行时域地址;二是LMA(load memory address),是该section的加载时域地址。
可以通过objdump工具附加'-h'选项来查看目标文件中的sections。
*简单的Linker script
(1) SECTIONS命令:
The SECTIONS command tells the linker how to map input sections into output sections, and how to place the output sections in memory.
命令格式如下:
SECTIONS
{
sections-command
sections-command
......
}
其中sections-command可以是ENTRY命令,符号赋值,输出段描述,也可以是overlay描述。
(2) 地址计数器‘.’(location counter):
该符号只能用于SECTIONS命令内部,初始值为‘0’,可以对该符号进行赋值,也可以使用该符号进行计算或赋值给其他符号。它会自动根据SECTIONS命令内部所描述的输出段的大小来计算当前的地址。
(3) 输出段描述(output section description):
前面提到在SECTIONS命令中可以作输出段描述,描述的格式如下:
section [address] [(type)] : [AT(lma)]
{
output-section-command
output-section-command
...
} [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]
很多附加选项是用不到的。其中的output-section-command又可以是符号赋值,输入段描述,要直接包含的数据值,或者某一特定的输出段关键字。
*linker script 实例
==============================
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS {
}
=============================
在SECTIONS命令中的类似于下面的描述结构就是输出段描述:
.start ALIGN(4) : {
}
.start 为output section name,ALIGN(4)返回一个基于location counter(.)的4字节对齐的地址值。*(.text.start)是输入段描述,*为通配符,意思是把所有被链接的object文件中的.text.start段都链接进这个名为.start的输出段。
源文件中所标识的section及其属性实际上就是对输入段的描述,例如.text.start输入段在源文件start.S中的代码如下:
.section .text.start
.global _start
_start :
arm-elf-ld -Ttimer.lds -o timer_elf header .o
这里就必须存在一个timer.lds的文件。
对于.lds文件,它定义了整个程序编译之后的连接过程,决定了一个可执行程序的各个段的存储位置。虽然现在我还没怎么用它,但感觉还是挺重要的,有必要了解一下。
先看一下GNU官方网站上对.lds文件形式的完整描述:
SECTIONS {
...
secname start BLOCK(align) (NOLOAD) : AT ( ldadr )
...
}
secname和contents是必须的,其他的都是可选的。下面挑几个常用的看看:
1、secname:段名
2、contents:决定哪些内容放在本段,可以是整个目标文件,也可以是目标文件中的某段(代码段、数据段等)
3、start:本段连接(运行)的地址,如果没有使用AT(ldadr),本段存储的地址也是start。GNU网站上说start可以用任意一种描述地址的符号来描述。
4、AT(ldadr):定义本段存储(加载)的地址。
SECTIONS {
firtst 0x00000000 : { head.o init.o }
second 0x30000000 : AT(4096) { main.o }
}
这就是存储地址和连接(运行)地址的不同,称为加载时域和运行时域,可以在.lds连接脚本文件中分别指定。
编写好的.lds文件,在用arm-linux-ld连接命令时带-Tfilename来调用执行,如
arm-linux-ld –Tnand.lds x.o y.o –o xy.o。也用-Ttext参数直接指定连接地址,如
arm-linux-ld –Ttext 0x30000000 x.o y.o –o xy.o。
既然程序有了两种地址,就涉及到一些跳转指令的区别,这里正好写下来,以后万一忘记了也可查看,以前不少东西没记下来现在忘得差不多了。
ARM汇编中,常有两种跳转方法:b跳转指令、ldr指令向PC赋值。
我自己经过归纳如下:
b step1 :b跳转指令是相对跳转,依赖当前PC的值,偏移量是通过该指令本身的bit[23:0]算出来的,这使得使用b指令的程序不依赖于要跳到的代码的位置,只看指令本身。
ldr pc, =step1 :该指令是从内存中的某个位置(step1)读出数据并赋给PC,同样依赖当前PC的值,但是偏移量是那个位置(step1)的连接地址(运行时的地址),所以可以用它实现从Flash到RAM的程序跳转。
此外,有必要回味一下adr伪指令,U-boot中那段relocate代码就是通过adr实现当前程序是在RAM中还是flash中。仍然用我当时的注释
OUTPUT_FORMAT("elf32littlearm", "elf32littlearm", "elf32littlearm")
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
}
上一篇:TQ2440的FCLK,HCLK,PCLK,UCLK时钟频率设置
下一篇:STM32F103和STM32F107差别浅谈
推荐阅读最新更新时间:2024-03-16 14:44