stm32 栈溢出 错误

发布者:码字狂人最新更新时间:2020-01-15 来源: eefocus关键字:stm32  栈溢出  错误 手机看文章 扫描二维码
随时随地手机看文章

今天搞的一个stm32 的程序发生了错误。全局变量遭到了局部变量的篡改。新手感觉很奇特。


看了一些资料,发现时栈区设置太小所导致的,全局变量向上生长,栈区向下生长。stm32的栈顶是程序自动生成的(暂时是这么认为的,有待进一步确定),程序会地洞生成栈顶。并且栈底和全局变量区是紧挨的,因此如果栈溢出的话,会直接将全局变量去的地址拿来自己用,于是全局变量区的地址和栈区的地址重合,导致全局变量遭到局部变量篡改的错误。


看看下面一些专业的解释会更清晰!


对于单片机这种封闭代码的运行平台,内存分配有2个大方向,一个是静态变量,一个是动态变量,具体到作用域,又分为局部变量和全局变量.

全局静态变量:不管是否调用,它都在那里,比如LZ示例的 line:11 和 line:15,注意这里加了关键字,指明这个变量是并不是真正意义的全局变量,只是在这个文件的所有位置<声明位置以后的所有位置>可用.

局部静态变量:和全局静态变量类似,也是不管拉不拉屎先占坑的货,比如LZ示例的 line:23 .特点是加了关键字,意思是在这个位置,它是唯一的.在函数里使用了递归,但局部静态变量是不在递归里重新分配空间的,原子也是通过这个方式来判断两次进入之间的地址关系.

局部动态变量:这个是最常见的,比如LZ示例的 line:24,在这个示例里,每次声明<神灯啊神灯>,结果出来的都是新的神灯,许了愿就溜掉,是这种变量的特点.它不会记得它曾经是什么.注意,由于每次都喝了孟婆汤,有经验的码农会在召唤时默认赋一个初值,避免出现不可预料的使用.

全局动态变量:存在吗?全局可见但又可以踢掉的奇葩吗?抱歉,这句话对<全局>是个误解.<全局>的意思是变量本身没有编译器指定的生命周期,也就是<作用域>,但还有代码指定的生命周期.在LZ的示例里,<堆>就是这么一个东西,代码说<你在>就在,<你不在>就不在.申请了堆后,只要谁(任何位置的代码)知道这个位置是可以用的,谁都可以用(**具有进程内存保护的平台除外**),即使申请空间的变量<挂了>,这个空间也一直存在,直到有代码把它<销毁>掉.

顺便推销老帖http://www.openedv.com/posts/list/19693.htm

修改+注释.
**新的linux把uclinux统一了,不知道是否在单片机实现进程内存保护,同求证.不过这也不在<封闭代码平台>这个前提下了.


一、内存基本构成  
可编程内存在基本上分为这样的几大部分:静态存储区、堆区和栈区。他们的功能不同,对他们使用方式也就不同。  

静态存储区:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。它主要存放静态数据、全局数据和常量。  

栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。  

堆区:亦称动态内存分配。程序在运行的时候用malloc或new申请任意大小的内存,程序员自己负责在适当的时候用free或delete释放内存。动态内存的生存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存。 但是,良好的编程习惯是:如果某动态内存不再使用,需要将其释放掉,否则,我们认为发生了内存泄漏现象。


按照这个说法,我在.s文件里面设置了:

Heap_Size       EQU     0x00000000

也就是,没有任何动态内存分配。
这样,内存=静态存储区+栈区了。
不存在堆!!!
因为我没有用malloc来动态分配内存。
因此,前面提到的一切堆区,其实就是静态存储区。


栈增长和大端/小端问题是和CPU相关的两个问题.

1,首先来看:栈(STACK)的问题.

函数的局部变量,都是存放在"栈"里面,栈的英文是:STACK.STACK的大小,我们可以在stm32的启动文件里面设置,以战舰stm32开发板为例,在startup_stm32f10x_hd.s里面,开头就有:

Stack_Size      EQU     0x00000800

表示栈大小是0X800,也就是2048字节.这样,CPU处理任务的时候,函数局部变量做多可占用的大小就是:2048字节,注意:是所有在处理的函数,包括函数嵌套,递归,等等,都是从这个"栈"里面,来分配的.


所以,如果一个函数的局部变量过多,比如在函数里面定义一个u8 buf[512],这一下就占了1/4的栈大小了,再在其他函数里面来搞两下,程序崩溃是很容易的事情,这时候,一般你会进入到hardfault....


这是初学者非常容易犯的一个错误.切记不要在函数里面放N多局部变量,尤其有大数组的时候!

对于栈区,一般栈顶,也就是MSP,在程序刚运行的时候,指向程序所占用内存的最高地址.比如附件里面的这个程序序,内存占用如下图:

图中,我们可以看到,程序总共占用内存:20+2348字节=2368=0X940
那么程序刚开始运行的时候:MSP=0X2000 0000+0X940=0X2000 0940.
事实上,也是如此。

MSP就是:0X2000 0940.
程序运行后,MSP就是从这个地址开始,往下给函数的局部变量分配地址.

再说说栈的增长方向,我们可以用如下代码测试: 

//保存栈增长方向
//0,向下增长;1,向上增长.
static u8 stack_dir;

//查找栈增长方向,结果保存在stack_dir里面.
void find_stack_direction(void)
{
    static u8 *addr=NULL; //用于存放第一个dummy的地址。
    u8 dummy;               //用于获取栈地址 
    if(addr==NULL)    //第一次进入
    {                          
        addr=&dummy;     //保存dummy的地址
        find_stack_direction ();  //递归 
    }else                //第二次进入 
 {  
        if(&dummy>addr)stack_dir=1; //第二次dummy的地址大于第一次dummy,那么说明栈增长方向是向上的. 
        else stack_dir=0;           //第二次dummy的地址小于第一次dummy,那么说明栈增长方向是向下的.  
 }


这个代码不是我写的,网上抄来的,思路很巧妙,利用递归,判断两次分配给dummy的地址,来比较栈是向下生长,还是向上生长.
如果你在STM32测试这个函数,你会发现,STM32的栈,是向下生长的.事实上,一般CPU的栈增长方向,都是向下的.

2,再来说说,堆(HEAP)的问题.

全局变量,静态变量,以及内存管理所用的内存,都是属于"堆"区,英文名:"HEAP"
与栈区不同,堆区,则从内存区域的起始地址,开始分配给各个全局变量和静态变量.
堆的生长方向,都是向上的.在程序里面,所有的内存分为:堆+栈. 只是他们各自的起始地址和增长方向不同,他们没有一个固定的界限,所以一旦堆栈冲突,系统就到了崩溃的时候了.
同样,我们用附件里面的例程测试:


stack_dir的地址是0X20000004,也就是STM32的内存起始端的地址.
这里本来应该是从0X2000 0000开始分配的,但是,我仿真发现0X2000 0000总是存放:0X2000 0398,这个值,貌似是MSP,但是又不变化,还请高手帮忙解释下.
其他的,全局变量,则依次递增,地址肯定大于0X20000004,比如cpu_endian的地址就是0X20000005.


这就是STM32内部堆的分配规则.

3,再说说,大小端的问题.
大端模式:低位字节存在高地址上,高位字节存在低地址上 
小端模式:高位字节存在高地址上,低位字节存在低地址上

STM32属于小端模式,简单的说,比如u32 temp=0X12345678;
假设temp地址在0X2000 0010.
那么在内存里面,存放就变成了:
地址              |            HEX         |
0X2000 0010  |  78   56   43  12  |

CPU到底是大端还是小端,可以通过如下代码测试:
//CPU大小端
//0,小端模式;1,大端模式.
static u8 cpu_endian;

//获取CPU大小端模式,结果保存在cpu_endian里面
void find_cpu_endian(void)

 int x=1;
 if(*(char*)&x==1)cpu_endian=0; //小端模式 
 else cpu_endian=1;    //大端模式  
}
以上测试,在STM32上,你会得到cpu_endian=0,也就是小端模式.


3,最后说说,STM32内存的问题.
    还是以附件工程为例,在前面第一个图,程序总共占用内存:20+2348字节,这么多内存,到底是怎么得来的呢?
我们可以双击Project侧边栏的:Targt1,会弹出test.map,在这个里面,我们就可以清楚的知道这些内存到底是怎么来的了.在这个test.map最后,Image 部分有:
==============================================================================

Image component sizes


      Code (inc. data)   RO Data    RW Data    ZI Data      Debug   Object Name

       172         10          0          4          0        995   delay.o//delay.c里面,fac_us和fac_ms,共占用4字节
       112         12          0          0          0        427   led.o
        72         26        304          0       2048        828   startup_stm32f10x_hd.o  //启动文件,里面定义了Stack_Size为0X800,所以这里是2048.
       712         52          0          0          0       2715   sys.o
       348        154          0          6          0     208720   test.o//test.c里面,stack_dir和cpu_endian 以及*addr  ,占用6字节.
       384         24          0          8        200       3050   usart.o//usart.c定义了一个串口接收数组buffer,占用200字节.

    ----------------------------------------------------------------------
      1800        278        336         20       2248     216735   Object Totals //总共2248+20字节
         0          0         32          0          0          0   (incl. Generated)
         0          0          0          2          0          0   (incl. Padding)//2字节用于对其

    ----------------------------------------------------------------------

      Code (inc. data)   RO Data    RW Data    ZI Data      Debug   Library Member Name

         8          0          0          0          0         68   __main.o
       104          0          0          0          0         84   __printf.o
        52          8          0          0          0          0   __scatter.o
        26          0          0          0          0          0   __scatter_copy.o
        28          0          0          0          0          0   __scatter_zi.o
        48          6          0          0          0         96   _printf_char_common.o
        36          4          0          0          0         80   _printf_char_file.o
        92          4         40          0          0         88   _printf_hex_int.o
       184          0          0          0          0         88   _printf_intcommon.o
         0          0          0          0          0          0   _printf_percent.o
         4          0          0          0          0          0   _printf_percent_end.o
         6          0          0          0          0          0   _printf_x.o
        12          0          0          0          0         72   exit.o
         8          0          0          0          0         68   ferror.o
         6          0          0          0          0        152   heapauxi.o
         2          0          0          0          0          0   libinit.o
         2          0          0          0          0          0   libinit2.o
         2          0          0          0          0          0   libshutdown.o
         2          0          0          0          0          0   libshutdown2.o
         8          4          0          0         96         68   libspace.o          //库文件(printf使用),占用了96字节
        24          4          0          0          0         84   noretval__2printf.o
         0          0          0          0          0          0   rtentry.o
        12          0          0          0          0          0   rtentry2.o
         6          0          0          0          0          0   rtentry4.o
         2          0          0          0          0          0   rtexit.o
        10          0          0          0          0          0   rtexit2.o
        74          0          0          0          0         80   sys_stackheap_outer.o
         2          0          0          0          0         68   use_no_semi.o
         2          0          0          0          0         68   use_no_semi_2.o
       450          8          0          0          0        236   faddsub_clz.o
       388         76          0          0          0         96   fdiv.o
        62          4          0          0          0         84   ffixu.o
        38          0          0          0          0         68   fflt_clz.o
       258          4          0          0          0         84   fmul.o
       140          4          0          0          0         84   fnaninf.o
        10          0          0          0          0         68   fretinf.o
         0          0          0          0          0          0   usenofp.o

[1] [2]
关键字:stm32  栈溢出  错误 引用地址:stm32 栈溢出 错误

上一篇:STM32 堆和栈的学习(二)
下一篇:STM32栈和堆使用不同RAM的实现方法

小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved