关于MSP430中断机制

发布者:BlissfulSunrise最新更新时间:2020-02-05 来源: eefocus关键字:MSP430  中断机制 手机看文章 扫描二维码
随时随地手机看文章

中断很大程度上体现了一款单片机的性能,从这一点将MSP430在中断方面做得很不错,主要是提供了非常丰富的中断源,基本的有IO中断,定时器中断和一些接口中断(SPIUART,I2C)等等。

现在我就谈谈关于MSP430中断的一些特性,主要是在项目经历中感觉比较有用的问题,跟大家分享下。

第一,MSP430中断的优先级。
MSP430支持中断优先级,但是优先级的高低怎么获知呢?它的用手手册上有个很有意思的说法,我原文引用过来“The nearer a module is to the CPU/NMIRS, the higher the priority”,翻译过来就是说离CPU/NMIRS越近,优先级就越高。那我们怎么知道那个模块离CPU近啊,看datasheet给的框图?总觉得这不可能让一个做电子的人放心,比如框图在中距CPU一样进,那怎么区分呢?所以我们有另外一个更可靠的办法,IAR为每一款型号的430都提供了对应的头问题,只靠看中断向量地址就可以知道了。430的中断向量表从地址值0xFFC0开始至0XFFFF结束,一共有32个表项(每个中断向量对应2byte),0XFFCO对应的中断向量的优先级是最顶的,0XFFFE对应的中断向量的优先级是最高的,也就是从0xFFCO开始至0xFFFF,32个中断优先级由低至高。这样就很容易弄清楚各中断的优先级了。

第二,MSP430中断的响应过程。
首先,当然是中断发生对应的标志为置1。这个时候的过程我详述下,其实是翻译的用户手册但是还是了解下好。
1.CPU会执行完当期的指令。
2.指向下一条指令的PC被压栈。
3.状态寄存器SR压栈。
4.选择最好优先级的中断进行服务。
5.单源中断的中断标志位会被自动清零,这个地方需要小心下P1,P2这样的中断标志位不会自动清零,因为P1、P2的IO中断属于多源中断,就是说P1或者P2的8个IO对应到了一个中断向量上,单片机知道是P1或者P2发生了中断,无论是P1的哪一个IO发生的都会指向P1的中断向量,P2也是一样的,所以需要在代码中手动清零。6.状态寄存器SR被清零,将会终止任何低功耗状态,并且全局中断使能被关闭(GIE)。这个地方与51很是有些不同,430响应了中断后会关闭全局中断使能,不会响应任何其他的中断包括优先级高的,就是说默认状态下是没有中断嵌套的,若用到中断嵌套的话需要使用_EINT()打开全局中断。
7.中断向量被装载到PC,开始执行中断服务函数。


以上是整个中断的接收过程,比较重要的地方我用彩色字体标出了。

中断返回就相对简单些,中断服务函数会由RETI这条指令返回,SR被弹出,单片机恢复到中断前的状态,PC也被弹出,继续执行指令。


第三,开中断和中断服务函数。
这个是让我在项目中纠结过的地方,也请各位小心。
MSP430一旦开了外设的中断,比如SPI的接收中断。
在SPI的接收中断被使能,单片机一旦发现SPI接收标志置位,就会装载中断向量,但是我们如果没有用到SPI的接收中断,会怎样呢?由于没用到,所有就没有写SPI接收中断的服务函数,此时中断向量里指向中断服务函数地址值是啥?是全0。CPU从0-01FFh取指令,只会发生一件事。PUC,上电清零。接着PC会装载0xFFFE中断向量的内容,也就是复位向量,程序会跳转到给IAR我们做的启动代码。程序再往下执行会执行到我们编写的代码的main()的第一句。这样悲剧就诞生了,荡机了!!!!


所以我在这希望初学430的朋友对于中断,未使用的就不要使能。使能的就一定要写中断服务函数,哪怕是空函数!


1.中断嵌套,优先级 

430总中断的控制位是状态寄存器内的GIE位(该位在SR寄存器内),该位在复位状态下,所有的可屏蔽中断都不会发生响应。可屏蔽中断又分为单中断源和多中断源的。单中断源的一般响应了中断服务程序中断标志位就自动清零,而多中断源的则要求查询某个寄存器后中断标志位才会清零。由于大多数人接触的第一款单片机通常是51,51单片机CPU在响应低优先级的中断程序过程中若有更高优先级的中断发生,单片机就会去执行高优先级,这个过程已经产生了中断嵌套。而430单片机则不同,如果在响应低优先级中断服务程序的时候,即使来了更高优先级的中断服务请求,430也会置之不理,直至低优先级中断服务程序执行完毕,才会去响应高优先级中断。这是因为430在响应中断程序的时候,总中断GIE是复位状态的,如果要产生类似51的中断嵌套,只能在中断函数内再次置位GIE位。 

2.定时器TA 
TimerA有2个中断向量。TIMERA0,TIMERA1 
TIMERA0只针对CCR0的计数溢出 
TIMERA1再查询TAIV后可知道是CCR1,还是CCR2,亦或TAIFG引起的,至于TAIFG是什么情况下置位的,则要看TA工作的模式 
具体看用户手册。还有一点TA本身有PWM输出功能,无须借用中断功能。在这个问题上经常出现应用弯路的是如何结合TA和AD实行定时采样的问题,很多人都是在TA中断里打开AD这样来做。这是不适宜的,因为430 的ADC10,ADC12(SD16不熟悉,没发言权)模块均有脉冲采样模式和扩展采样模式。只要选择AD是由TA触发采样,然后把TA设置成PWM输出模式,当然输出PWM波的都是特殊功能脚,但是在这里它是不需要输出的,所以引脚设置不必理会。值得关心的就是PWM的频率,也就是你AD的采样率。 

3.看门狗复位 
看门狗有2种工作模式:定时器 ,看门狗 
定时器工作模式下WDTIFG在响应中断服务程序有标志位自动复位,而在看门狗模式下,该标志位只能软件清零。但是怎么判断复位是由于WDT工作在看门狗模式下的定时溢出引起的,还是看门狗写密钥错误引起的呢?……………………………… 
答案是没有方法,至少我没见过有什么方法,也没见过周边的人有什么方法。若有人知道方法谢谢分享。 

4.经常有人会问这个语句的MOV.B  #LPM0,0(SP)的作用。假如你在进入中断函数之前,430是在LPM0下待机,若要求执行完中断函数之后进入LPM3待机,在中断函数里写MOV.B  #LPM3,SR是无效的。因为在进入中断时430会把PC,SR压栈,( SR内保存着低功耗模式的设置)即使你写了MOV.B  #LPM3,SR,在退出中断出栈时SR会被重新设置成低功耗0,要达到这样的目的,只能更改堆栈内SR的设置:MOV.B  #LPM0,0(SP)。 

5中断向量: 
430的中断向量是FFE0H—FFFFH,一共32个字节也就是FLASH的最后一段,430的FLASH有大有小,但是最后地址肯定是FFFFH(大FLASH超过64K的除外)所以它们的起始地址是不一样的,而一般IAR默认编译都是把程序放在FLASH开始的位置(不包括信息段)。 


有个值得弄清楚的问题是:什么是中断向量?中断向量实际就是保存中断函数入口地址的存储单元空间。就像FFFEH+FFFFH这2个字节是复位中断向量,那么它存储的就是主函数在FLASH内的起始地址,假如主函数保存在以0x1100为起始地址的FLASH块内 ,那么你会发现FFFFH 内保存的是0x11, FFFE内保存的是0x00.其他什么TimerA,ADC12,所有的都一样。只是你每次写的程序长短不一,中断函数放的位置不一样。IAR编译器都会给你定好,然后在你用JTAG烧写程序的时候,把这个地址,烧写到相应的中断向量。因为中断函数所处地址可以由用户自定义,也可以让IAR自动编译,所以这个地址除了源代码开发人员知道,其他人是不知道的,BSL就是应用这32个字节的中断向量内的内容的特殊性设置的密码。但是有几个东西在430是不变的,就是触发中断的条件满足后,它到哪个地方去寻址中断服务函数的入口地址,是TI 在做430时就固化好,定死的。比方说上电复位的时候,它知道去FFFE,FFFF单元找地址,而不去FFE0,FFE2找地址,这个映射关系是430固化不变的。可有的时候你就是需要改变“中断向量”,这怎么办?430FLASH程序自升级里有时就会碰到这个问题,方法是在430原来默认的中断向量表内做一个跳转操作,同样以上电复位为例: 
ORG  0x2345 
PowerReset: mov.w  &0xFCFE,PC 
………………………… 
………………………… 
ORG  0xFFFE 
DW   PowerReset 
这样的话0xFCFE就相当是0xFFFE的映射了。这个在430程序自升级的TI应用报告里就有。

关键字:MSP430  中断机制 引用地址:关于MSP430中断机制

上一篇:【MSP430中断】MSP430的IO口中断/中断特性
下一篇:MSP430中断相关

推荐阅读最新更新时间:2024-11-12 21:29

基于MSP430F2012和nRF24L01低功耗RFID定位设计方案
  射频识别(RFID)技术是采用无线射频的方式实现双向数据交换并识别身份,RFID定位正是利用了这一识别特性,利用阅读器和标签之间的通信信号强度等参数进行空间的定位。   RFID标签按供电方式分为有源和无源2种[1],无源标签通过捕获阅读器发射的电磁波获取能量,具有成本低、尺寸小的优势;有源标签通常采用电池供电,具有通信距离远、读取速度快、可靠性好等优点[2],但为了满足煤矿井下定位,需要考虑低功耗设计以增强电池的续航能力。本文从有源标签的设计理念出发,针对小范围空间RFID定位的需求,根据低功耗、高效率的原则进行RFID标签的设计,并阐述了其硬件组成、软件流程和防冲突能力。   2.系统硬件设计   2.1 系统结构
[单片机]
基于<font color='red'>MSP430</font>F2012和nRF24L01低功耗RFID定位设计方案
MSP430的升级引导程序编写以及升级固件制作
详细介绍MSP430的升级引导程序编写以及升级固件制作。 1.关于升级引导代码的实现: 主要功能实现:进行相对应的升级程序跳转用户程序的选择 对于MSP430的启动初始化来讲,是默认看门狗打开,所以需要提前关闭看门狗, void WDT_A_hold(uint16_t baseAddress) { // Set Hold bit uint8_t newWDTStatus = ((HWREG16(baseAddress + OFS_WDTCTL) & 0x00FF) | WDTHOLD); HWREG16(baseAddress + OFS_WDTCTL) = WD
[单片机]
<font color='red'>MSP430</font>的升级引导程序编写以及升级固件制作
IAR的MSP430 C编程基础知识
通常我们开发单片机程序都是使用C语言的,为什么C语言比汇编方便呢?原因就是C编译器在为我们做着大量的琐碎的组织翻译工作。在此感谢IAR,辛辛苦苦的劳动着,却没有辛苦钱! 好,我们从新建一个工程开始,打开IAR,空白,project,create new project,C,main,确定。给工程起个名字,保存。OK,工程建立完毕了。这时工程里已经有个main.c了,并且有一个完整的程序,如下: #include io430.h int main( void ) { // Stop watchdog timer to prevent time out reset WDTCTL = WDTPW + WDTHOLD;
[单片机]
基于MSP430F149的电力测控保护产品的应用设计
MSP430F149(以下简称“F149”)是德州仪器(TI)公司推出超低功耗Flash型16位RISC指令集单片机。F149有丰富的内部硬件资源,是一款性价比极高的工业级芯片。在应用中,F149不需做过多的扩展,适合要求快速处理的实时系统,故可在电力系统微机测量和保护方面得以应用。详细的F149资料可参阅有关文献,本文主要对电力系统中基本参数测量的实现方法和开发中一些应注意的问题进行论述。 1 F149外围模拟信号调理 在电力系统微机测量中,通常将一次额定电流和电压通过电流互感器(TA)、电压互感器(TV)分别转换为0~5A的电流信号和0~100V的电压信号,该信号再经一级互感器转换为数百mV~几V的电压信号,具体输出电
[单片机]
基于<font color='red'>MSP430</font>F149的电力测控保护产品的应用设计
MSP430之ADC采集滤波
占位符 1 /* 加权平均滤波 */ 2 static unsigned char coe = {1,2,3,4,5,6,7,8,9,10,11,12,13}; 3 static unsigned int coeSum= 1+2+3+4+5+6+7+8+9+10+11+12+13; 4 unsigned long temp = 0; 5 6 for (i = 0; i ADCN; i++) 7 { 8 temp += arr *coe ; 9 } 10 temp = (unsigned long )( temp * 1.0 / coeSum); 占位符 1 /* 中值
[单片机]
串口通信_MSP430串口通信(入门级)
MSP430F5529实现双板间串口通信 年轻人,不要一上来就急着敲代码,串口通信用到的的13个寄存器,快来看看你都会了吗? 哈哈哈~~,可千万不要被这些牛鬼蛇神吓住啊,这次我们讲的是入门级的,不会设置这么多寄存器的(但也不少呦)。 准备好了吗?下面我们开讲了! 1.数据格式 (1)ST:起始位(低电平启动串口) 因为串口待机时处于长期高电平状态,当检测到有低电平时,就会启动准备接收数据。 (2)D0~D7:数据位(可以7位,也可以8位) 1对应高定平,0对应低电平(这应该都清楚吧) (3)AD:地址位:(双板通信用不到) 当多机通信时(例如一个设备发送,多个设备接收) 需要添加地址位
[单片机]
串口通信_<font color='red'>MSP430</font>串口通信(入门级)
MSP430单片机设计的婴儿睡眠监护系统
本文将介绍利用MSP430单片机设计的婴儿睡眠监护系统,该系统包括多点尿湿检测模块、声音检测模块、声光报警模块和无线传输模块。以低功耗的MSP430为主控,利用DHT11芯片检测温湿度,单片机处理后的温、湿度信息由nRF24L01发送给接收端,当温湿度超出阈值或检测到婴儿啼哭时进行声光报警。经实际测试,该系统运行可靠,低功耗、低成本、高实用性,具有推广价值。 在当今生活和工作节奏日益紧张的社会,女性往往要兼顾工作和家庭,尤其初为人母,既要照顾婴儿,还要料理家务,新妈妈们往往手忙脚乱。婴儿一天中大部分时间都在睡眠,如何对其进行睡眠监护,在婴儿醒来时及时安抚、如何解决尿湿问题一直困扰着忙碌的新妈妈们。绝大多数的家庭选择使用方便的纸尿裤
[单片机]
<font color='red'>MSP430</font>单片机设计的婴儿睡眠监护系统
关于MSP430的时钟问题的简介
  单片机上电后,如果不对时钟系统进行设置,默认800 kHz的DCOCLK为MCLK和SMCLK的时钟源,LFXTl接32768 Hz晶体,工作在低频模式(XTS=O)作为ACLK的时钟源。CPU的指令周期由MCLK决定,所以默认的指令周期就是1/800 kHz="1".25μs。要得到lμs的指令周期需要调整DCO频率,即MCLK=1 MHz,只需进行如下设置:BCSCTLl=XT20FF+RSEL2;   //关闭XT2振荡器,设定DCO频率为1 MHz   DCOCTL=DCO2   //使得单指令周期为lμs   MSP430的时钟周期(振荡周期)、机器周期、指令周期之间的关系   通用知识时钟周期也称为振荡周
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved