最近在看数据手册的时候,发现STM32的GPIO输入输出模式的配置种类有8种之多(输入和输入各4种):
(1)GPIO_Mode_AIN模拟输入
(2)GPIO_Mode_IN_FLOATING浮空输入
(3)GPIO_Mode_IPD下拉输入
(4)GPIO_Mode_IPU上拉输入
(5)GPIO_Mode_Out_OD开漏输出
(6)GPIO_Mode_Out_PP推挽输出
(7)GPIO_Mode_AF_OD复用开漏输出
(8)GPIO_Mode_AF_PP复用推挽输出
我们平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但对于各种模式下IO口的内部电路和典型应用,STM32的数据手册中也未曾做过详细的说明和归纳。因此,这里收集了一些网上的资料,试图做一总结。
推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。
详细理解:
推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经VT3拉出。这样一来,输出高低电平时,VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。
开漏输出:输出端相当于三极管的集电极。 要得到高电平状态需要上拉电阻才行。 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。
开漏形式的电路有以下几个特点:
1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。
2. 一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)
3. OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。
4. 可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。补充:什么是“线与”?:
在一个结点(线)上,连接一个上拉电阻到电源VCC或VDD和n个NPN或NMOS晶体管的集电极C或漏极D,这些晶体管的发射极E或源极S都接到地线上,只要有一个晶体管饱和,这个结点(线)就被拉到地线电平上。因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS),晶体管就会饱和,所以这些基极或栅极对这个结点(线)的关系是或非NOR逻辑。如果这个结点后面加一个反相器,就是或OR逻辑。
其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。
该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。
浮空输入:对于浮空输入,一直没找到很权威的解释,。
也有认为[2]:如果既要用于输出,又要接收信号作输入,无需改变该pin的工作模式,只需设定为浮空浮点状态GPIO_Mode_IN_FLOATING ,但是读的时候读输入寄存器(GPIOE-》IDR)的值。输出值照样设定,不过输出pin脚可能要硬件上上拉。
由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。
上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。
复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)
最后总结下使用情况:
在STM32中选用IO模式
(1)浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
(2)带上拉输入_IPU——IO内部上拉电阻输入
(3)带下拉输入_IPD—— IO内部下拉电阻输入
(4)模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电
(5)开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能
(6)推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
(7)复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL,SDA)
(8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)
STM32设置实例:
(1)模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出0和1;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);
(2)如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD;
上一篇:STM32单片机的重映射与地址映射的使用方法及步骤
下一篇:基于STM32单片机启动文件的作用和启动过程解析
推荐阅读最新更新时间:2024-11-16 21:10
设计资源 培训 开发板 精华推荐
- S5U13L03P00C100,基于S1D13L03 LCD控制器的评估板
- MCP19035 高速同步降压控制器的典型应用
- TS39150 2.5V/1.5A超低压降稳压器典型应用
- LTC3890IUH 12V SEPIC 和 3.3V 降压转换器的典型应用电路
- T12,手柄集成控制板,改成打板尺寸内
- FAN5026双DDR/双输出PWM控制器典型应用电路
- LTC1592 的典型应用 - 具有可编程输出范围的 16 位 SoftSpan DAC
- LF18ABDT-TR 1.8V低压灯泡典型应用
- 【ART-Pi】机械臂主控板+681604A
- S8TS-06024 2.5A/24V AC/DC电源典型应用电路