基于STM32的八种GPIO输入输出模式解析

发布者:科技创造者最新更新时间:2020-02-05 来源: elecfans关键字:STM32  GPIO  输入输出模式 手机看文章 扫描二维码
随时随地手机看文章

最近在看数据手册的时候,发现STM32的GPIO输入输出模式的配置种类有8种之多(输入和输入各4种):

(1)GPIO_Mode_AIN模拟输入

(2)GPIO_Mode_IN_FLOATING浮空输入

(3)GPIO_Mode_IPD下拉输入

(4)GPIO_Mode_IPU上拉输入

(5)GPIO_Mode_Out_OD开漏输出

(6)GPIO_Mode_Out_PP推挽输出

(7)GPIO_Mode_AF_OD复用开漏输出

(8)GPIO_Mode_AF_PP复用推挽输出

我们平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但对于各种模式下IO口的内部电路和典型应用,STM32的数据手册中也未曾做过详细的说明和归纳。因此,这里收集了一些网上的资料,试图做一总结。

基于STM32的八种GPIO输入输出模式解析

推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。


详细理解:

推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经VT3拉出。这样一来,输出高低电平时,VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。


开漏输出:输出端相当于三极管的集电极。 要得到高电平状态需要上拉电阻才行。 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。


开漏形式的电路有以下几个特点:

1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。

2. 一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)


3. OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。


4. 可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。补充:什么是“线与”?:

在一个结点(线)上,连接一个上拉电阻到电源VCC或VDD和n个NPN或NMOS晶体管的集电极C或漏极D,这些晶体管的发射极E或源极S都接到地线上,只要有一个晶体管饱和,这个结点(线)就被拉到地线电平上。因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS),晶体管就会饱和,所以这些基极或栅极对这个结点(线)的关系是或非NOR逻辑。如果这个结点后面加一个反相器,就是或OR逻辑。


其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。


该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。


浮空输入:对于浮空输入,一直没找到很权威的解释,。


也有认为[2]:如果既要用于输出,又要接收信号作输入,无需改变该pin的工作模式,只需设定为浮空浮点状态GPIO_Mode_IN_FLOATING ,但是读的时候读输入寄存器(GPIOE-》IDR)的值。输出值照样设定,不过输出pin脚可能要硬件上上拉。


由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。


上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。

复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)


最后总结下使用情况:

在STM32中选用IO模式

(1)浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1

(2)带上拉输入_IPU——IO内部上拉电阻输入

(3)带下拉输入_IPD—— IO内部下拉电阻输入

(4)模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电

(5)开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能

(6)推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的

(7)复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL,SDA)

(8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)


STM32设置实例:

(1)模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出0和1;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);

(2)如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD;

关键字:STM32  GPIO  输入输出模式 引用地址:基于STM32的八种GPIO输入输出模式解析

上一篇:STM32单片机的重映射与地址映射的使用方法及步骤
下一篇:基于STM32单片机启动文件的作用和启动过程解析

推荐阅读最新更新时间:2024-11-11 23:22

018_STM32程序移植之_串口接收中文
(一)在平时数据传输中很少用到接收中文的情况,但是最近需要用到就花了半天时间来弄弄 (二)接收原理,从现在接收情况分析:一个中文占两个数据的空间,也就是两个十六进制可以转化成为一个中文 (三)示例情况,用Hex Editor来看看中文 “你好”,可以看到四个十六进制数据:0xc4,0xe3,0xba,0xc3 (四)我们的目的还是单片机通过串口来进行数据的接收,用CH340短接T和R看看发送“你好”也是会接收到十六进制0xc4,0xe3,0xba,0xc3 (五)从上面两点来看,一个中文占据两个数据,也就是说当我们发送“你好”给单片机时候实际中断了四次,接收到的数据分别为0xc4,0xe3,0xba,0xc3 那么我们
[单片机]
STM32单片机(7) 串口通信printf重定向
1、添加头文件 #include stdio.h 2、工程“Target -- 勾选 Use MicroLIB 3、重定义fputc函数 int fputc(int ch, FILE *f) { Uart1_PutChar((u8)ch); //此处为自定义函数,参见串口中断通信,请勿盲目复制 return (ch); } 经过上述配置后即可在项目中使用printf( Hello~ );等来发送字符串了 (printf( 格式化字符串 , 参量表 ) 与C语言使用一样)
[单片机]
stm32+ucos+ucgui 中edit框读取AD值以十进制显示
初始化 case WM_INIT_DIALOG: hEdit0 = WM_GetDialogItem(hDlg, GUI_ID_EDIT0); //创建Dialog hRadio = WM_GetDialogItem(hDlg, GUI_ID_RADIO0); //创建Dialog //EDIT_SetDecMode(hEdit0, 0, 0, 5000, 0, 0); /* Select decimal mode */ EDIT_SetMaxLen(hEdit0,4); //此句要进行设置edit 默认显示3位数 //WM_DisableWindow(hItem); RADIO_SetVa
[单片机]
关于STM32 SPI NSS问题的探讨
对于STM32的SPI ,Reference Manual中是给出的schematic如下: 按照标准的SPI协议,当SPI被配置为主机模式后,通过SPI对从设备进行操作时,其NSS应该自动置低,从而选中(使能)从设备;一旦不对从设备进行操作,NSS立刻置为高。 但是,我在实际调试过程中却发现:STM32 SPI NSS无法自动实现跳变。 一旦SPI初始化完成并使能SPI,NSS立刻置低,然后保持不变。 这个问题一直无法解决,直到我在ST官方论坛上看到国外有些技术人员也在讨论这个问题,他们得出的结论是:STM32 SPI NSS无法自动跳变。 RichardE Post
[单片机]
关于<font color='red'>STM32</font> SPI NSS问题的探讨
STM32定时器触发DMA数据传输失败的原因如何解决
有人使用STM32的定时器事件触发DMA,让其将内存数据传输到通信外设的数据寄存器进行发送,发现DMA根本就不动作。 比方以基于STM32F411的芯片为例,通过TIM3更新事件触发DMA请求,DMA从内存将数据送到SPI1‍的数据寄存器,从而完成数据发送。 他采用CubeMx进行配置。基本配置如下: ‍ 相关用户实现代码如下: 从配置过程和代码实现来看,似乎都没有问题。那DMA怎么就是不动作呢? 问题出在我们使用上面的函数做DMA传输所关联源端和目标端时,出现了想当然的情况。 我们利用TIMER事件来作为DMA请求源时,而作为数据传输的源端或目的端,都是我们用户指定的。这时就一定要注意源端和目标端是当前DMA
[单片机]
<font color='red'>STM32</font>定时器触发DMA数据传输失败的原因如何解决
STM32外部中断事件控制器EXTI概念及使用方法
前言 EXTI: External interrupt / event controller 外部中断/事件控制器 提示:以下是本篇文章正文内容 一、EXTI功能框图 二、使用方法 1.EXTI_InitTypeDef 初始化结构体 1-EXTI_Line:用于产生中断/事件线 2-EXTI_Mode : EXTI模式(中断/事件) 3-EXTI_Trigger:触发(上/下/上下) 4-EXTI_LineCmd:使能或者失能(IMR/EMR) 2.实现步骤 1-初始化要连接到EXTI的GPIO 2-初始化EXTI用于产生中断/事件 3-初始化NVIC,用于处理中断 4-编写中断服务函数 5-main函数 三、
[单片机]
<font color='red'>STM32</font>外部中断事件控制器EXTI概念及使用方法
STM32学习笔记——系统定时器SysTick的使用
//Cortex系统定时器SysTick提供1个24位、降序、零约束、写清除的计数器,具有灵活的控制机制 #include stm32f10x_lib.h GPIO_InitTypeDef GPIO_InitStructure; //定义用于初始化配置GPIO的结构体变量 static vu32 TimingDelay; //定义为volatile类型 ErrorStatus HSEStartUpStatus; //定义枚举类型的错误状态 void TimingDelay_Decrement(void); void RCC_Configuration(void); void
[单片机]
STM32(cortex_m3) 的 Bit-Banding 怎样理解
Bit-Banding的意思:对Bit-Band区一个字的操作对应实际存储器中的一位。 在STM32F10xxx的技术参考手册中第2.3.3节,有这样的描述: Cortex-M3存储器映像包括两个位段(bit-band)区。这两个位段区将别名存储器区中的每个字映射到位段存储器区的一个位,在别名存储区写入一个字具有对位段区的目标位执行读-改-写操作的相同效果 。 即M3利用别名区简化了位操作了位段区的位操作(将一般的读-改-写简化为写)。 别名区空间大小是位段区的32倍(因为每1位映射为1字)。 在STM32F10x里存储器映像中包括2个位段区,分别是: SRAM区低1MB 0x2000 0000 - 0x200f ffff
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved