基于STM32的八种GPIO输入输出模式解析

发布者:科技创造者最新更新时间:2020-02-05 来源: elecfans关键字:STM32  GPIO  输入输出模式 手机看文章 扫描二维码
随时随地手机看文章

最近在看数据手册的时候,发现STM32的GPIO输入输出模式的配置种类有8种之多(输入和输入各4种):

(1)GPIO_Mode_AIN模拟输入

(2)GPIO_Mode_IN_FLOATING浮空输入

(3)GPIO_Mode_IPD下拉输入

(4)GPIO_Mode_IPU上拉输入

(5)GPIO_Mode_Out_OD开漏输出

(6)GPIO_Mode_Out_PP推挽输出

(7)GPIO_Mode_AF_OD复用开漏输出

(8)GPIO_Mode_AF_PP复用推挽输出

我们平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但对于各种模式下IO口的内部电路和典型应用,STM32的数据手册中也未曾做过详细的说明和归纳。因此,这里收集了一些网上的资料,试图做一总结。

基于STM32的八种GPIO输入输出模式解析

推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。


详细理解:

推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经VT3拉出。这样一来,输出高低电平时,VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。


开漏输出:输出端相当于三极管的集电极。 要得到高电平状态需要上拉电阻才行。 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。


开漏形式的电路有以下几个特点:

1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。

2. 一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)


3. OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。


4. 可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。补充:什么是“线与”?:

在一个结点(线)上,连接一个上拉电阻到电源VCC或VDD和n个NPN或NMOS晶体管的集电极C或漏极D,这些晶体管的发射极E或源极S都接到地线上,只要有一个晶体管饱和,这个结点(线)就被拉到地线电平上。因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS),晶体管就会饱和,所以这些基极或栅极对这个结点(线)的关系是或非NOR逻辑。如果这个结点后面加一个反相器,就是或OR逻辑。


其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。


该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。


浮空输入:对于浮空输入,一直没找到很权威的解释,。


也有认为[2]:如果既要用于输出,又要接收信号作输入,无需改变该pin的工作模式,只需设定为浮空浮点状态GPIO_Mode_IN_FLOATING ,但是读的时候读输入寄存器(GPIOE-》IDR)的值。输出值照样设定,不过输出pin脚可能要硬件上上拉。


由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。


上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。

复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)


最后总结下使用情况:

在STM32中选用IO模式

(1)浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1

(2)带上拉输入_IPU——IO内部上拉电阻输入

(3)带下拉输入_IPD—— IO内部下拉电阻输入

(4)模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电

(5)开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能

(6)推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的

(7)复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL,SDA)

(8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)


STM32设置实例:

(1)模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出0和1;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);

(2)如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD;

关键字:STM32  GPIO  输入输出模式 引用地址:基于STM32的八种GPIO输入输出模式解析

上一篇:STM32单片机的重映射与地址映射的使用方法及步骤
下一篇:基于STM32单片机启动文件的作用和启动过程解析

推荐阅读最新更新时间:2024-11-16 21:10

STM32学习之旅④ USART串口和上位机通信
一、认识其本质 (一)串口 串口是串行接口 (Serial Interface)的简称,它是指数据一位一位地顺序传送,其特点是通信线路简单,只要一对传输线就可以实现双向通信(可以直接利用电话线作为传输线),从而大大降低了成本,特别适用于远距离通信,但传送速度较慢。一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。串行通讯的特点是:数据位的传送,按位顺序进行,最少只需一根传输线即可完成;成本低但传送速度慢。串行通讯的距离可以从几米到几千米;根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。 (二)协议 所谓协议,就是通信双方约定好的规定,通信双方只有遵守这个规定才能够完成任务。举个栗子就是周幽王烽火戏诸侯,
[单片机]
<font color='red'>STM32</font>学习之旅④ USART串口和上位机通信
STM32窗口看门狗和独立看门狗的区别
一、介绍: STM32看门狗分为独立看门狗和窗口看门狗两种,其两者使用调条件如下所示, IWDG和WWDG两者特点如下图所示: 独立看门狗的手册资料: 窗口看门狗的手册资料: 应当注意:在窗口看门狗中,当递减计数器在窗口外被重新装载,(若看门狗被启动)则产生复位 【注】图中的WDGTB为3表示2^3=8,表示8分频,最小时间910us也等于每次计数器减一所需要经过的时间:T(LSB),每隔910us减1。最大值也等于,设置重载(喂狗)值127时(最大),一个复位周期的时间就是最大值58.25ms,也就是所能维持进入复位的最大时间。 由于窗口看门狗使用的APB1的PCLK1,
[单片机]
<font color='red'>STM32</font>窗口看门狗和独立看门狗的区别
stm32定时器外部计数模式 最大频率计算。
外部时钟模式下,外部信号通过内部时钟(CK_INT)采样得到。 外部信号周期的计算方法是:2xTINT+20ns,这里的TINT是CK_INT的周期时间。 例如:内部时钟频率为72MHz,则TINT = 13.89ns,这时外部信号的最高频率是:1/(2x13.89ns+20ns) = 20.93MHz。 如果内部时钟频率为24MHz,则外部信号的最高频率是16.22MHz。 可见外部信号的最高频率与内部时钟频率不是一个简单的比例关系。
[单片机]
STM32 串口通信(库函数操作)
1.说在前面: 清明三天小假期,放松一下无可厚非,但是,依旧要完成自己的学习任务 2.串口通信的简单介绍: 1.将串口作为一个沟通的渠道,可以和外界进行接收和发送信号 2.STM32和串口相关的寄存器: 2-1:USART_SR(状态寄存器):存储着MCU的一些状态 2-2:USART_DR(数据寄存器):暂存着一些数据信息 2-3:USART_BRR(波特率寄存器:暂存波特率信息 2-4:USART_CRI(控制寄存器):用于给usart进行使能 3.注:波特率的计算方法: 只要给出相应的时钟频率和设置usartdiv,就可以计算出波特率 3.串口通讯的简单配置和使用 1.其实基于
[单片机]
<font color='red'>STM32</font> 串口通信(库函数操作)
Robomaster-stm32-PWM学习笔记(stm32控制pwm输出)
学习笔记: 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 将通用 定时器 分为四个部分: 1-选择 时钟 2-时基电路 3-输入捕获 4-输出比较 实践1-pwm- led 闪烁 要求产生周期为200ms,占空比为50%的PWM 信号 来控制led灯。 1.cubemax配置 由原理图可知,led引脚复用为 ti m5 周期为200ms,占空比为50%,Tim5挂在APB1总线上,CLK =
[单片机]
Robomaster-stm32-PWM学习笔记(<font color='red'>stm32</font>控制pwm输出)
嵌入式系统中可配置式GPIO模拟SPI总线方法
在嵌入式系统处理器中有相当一部分处理器不带SPI接口,但基丁SPI接口的设备非常丰富,此外,SPI设备的不同以及处理器对GPIO口位寻址是否支持各处理器各有不同,因而不同处理器中软件模拟GPIO也各不相同。若能提供一种通用可配置可移植的GPIO模拟SPI总线的驱动则能很方便快捷的访问SPI设备,从而提高整个嵌入式系统的开发效率。本文针对GPIO口位寻址与否给出方面,给出了一种可配置GPIO模拟SPI总线的方法并详细介绍了其设计与实现过程,且具有代码小可移植性强使用方便等特点。 1 GPIO规范 SPI是一个全双工的串行接口。它设计成可以在一个给定总线上处理多个互联的主机和从机。在一定数据传输过程中,接口上只能有一个丰机和一个从
[应用]
基于STM32+CS创世 SD NAND(贴片SD卡)完成FATFS文件系统移植与测试(下篇)
四、移植FATFS文件系统 前面第3章,完成了SD NAND的驱动代码编写,这一章节实现FATFS文件的移植。 4.1 FATFS文件系统介绍 (1)介绍 FatFs 是一种完全免费开源的 FAT 文件系统模块,专门为小型的嵌入式系统而设计。它完全用标准C 语言编写,所以具有良好的硬件平台独立性,可以移植到 8051、 PIC、 AVR、 SH、 Z80、 H8、 ARM 等系列单片机上而只需做简单的修改。它支持 FATl2、 FATl6 和 FAT32,支持多个存储媒介;有独立的缓冲区,可以对多个文件进行读/写,并特别对 8 位单片机和 16 位单片机做了优化。 (2)特点 【1】Windows兼容的FAT文件系统 【2
[单片机]
基于STM32+CS创世 SD NAND(贴片SD卡)完成FATFS文件系统移植与测试(下篇)
STM32中断向量表的位置,重定向
这篇文章已经说了STM32的启动过程: http://blog.csdn.net/lanmanck/article/details/8252560 我们也知道怎么跳到main函数了,那么,中断发生后,又是怎么跑到中断入口地址的呢? 从stm32f10x.s可以看到,已经定义好了一大堆的中断响应函数,这就是中断向量表,标号__Vectors,表示中断向量表入口地址,例如: AREA RESET, DATA, READONLY ; 定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000) EXPORT __Vectors IMPORT OS_C
[单片机]
<font color='red'>STM32</font>中断向量表的位置,重定向
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved