ARM体系结构与编程模型的总结

发布者:逍遥游侠最新更新时间:2020-04-28 来源: elecfans关键字:ARM  体系结构  编程模型 手机看文章 扫描二维码
随时随地手机看文章

一、ARM处理器简介及RISC特点


ARM处理器简介

ARM(Advanced RISC Machines)是一个32位RISC(精简指令集)处理器架构,ARM处理器则是ARM架构下的微处理器。ARM处理器广泛的使用在许多嵌入式系统。ARM处理器的特点有指令长度固定,执行效率高,低成本等。

RISC设计主要特点

1、指令集——RISC减少了指令集的种类,通常一个周期一条指令,采用固定长度的指令格式,编译器或程序员通过几条指令完成一个复杂的操作。而CISC指令集的指令长度通常不固定。

2、流水线——RISC采用单周期指令,且指令长度固定,便于流水线操作执行。

3、寄存器——RISC的处理器拥有更多的通用寄存器,寄存器操作较多。例如ARM处理器具有37个寄存器。

4、Load/Store结构——使用加载/存储指令批量从内存中读写数据,提高数据的传输效率。

5、寻址方式简化,指令长度固定,指令格式和寻址方式种类减少。


二、ARM指令集特点

ARM处理器是基于RISC的,但不是纯粹的RISC体系结构。为了使ARM处理器能够更好的满足嵌入式系统的需要,ARM指令集和单纯的RISC指令集有以下几点不同:

1、一些特定的指令周期数可变。例如多寄存器装载或存储的Load/Store指令执行周期就是不确定的,这个会根据相关的寄存器个数而定。如果是访问连续的内存地址,就可以改善性能,因为连续的内存访问比随机访问要快。根据这个特点,由于在函数的起始和结尾通常会有多个寄存器与内存进行数据交换的操作,因此相应操作的指令条数会减少,提高了代码的密度。

2、内嵌的桶形移位寄存器产生了更复杂的指令。桶形移位寄存器是一个硬件部件,在一个寄存器被一条指令使用之前,桶形移位寄存器可以处理这个寄存器中的数据。桶形移位寄存器扩展了许多指令的功能,以此改善内核的性能,提高代码密度。

3、Thumb16位指令集。ARM处理器有两种工作状态,一种是ARM状态,一种是Thumb状态。ARM状态下指令长度为32位,Thumb状态下指令长度为16位。这种特点使得ARM既能执行16位指令,又能执行32位指令,从而增强了ARM内核的功能。

4、条件执行。只有当某个特定条件满足时指令才会被执行。这个特性可以减少分支指令的数目,从而改善性能,提高代码密度。

5、增强指令。一些功能强大的数字信号处理器(DSP)指令被加入到标准的ARM指令中,以支持快速的16*16乘法操作及饱和运算。ARM的这些增强指令,使得ARM处理器不需要加上DSP即可实现。


三、ARM处理器特点

1、ARM指令都是32位定长的

2、寄存器数量丰富(37个寄存器)

3、普通的Load/Store指令

4、多寄存器的Load/Store指令

5、指令的条件执行

6、单时钟周期中的单条指令完成数据移位操作和ALU操作

7、通过变种和协处理器来扩展ARM处理器的功能

8、扩展了16位的Thumb指令来提高代码密度


四、ARM处理器命名规则

ARM编程模型 

一、ARM数据类型

1、字(Word):在ARM体系结构中,字的长度为32位。

2、半字(Half-Word):在ARM体系结构中,半字的长度为16位。

3、字节(Byte):在ARM体系结构中,字节的长度为8位。


二、ARM处理器存储格式

ARM体系结构将存储器看作是从0地址开始的字节的线性组合。作为32位的微处理器,ARM体系结构所支持的最大寻址空间为4GB。

ARM体系结构可以用两种方法存储字数据,分别为大端模式和小端模式。

大端模式(高地高低):字的高字节存储在低地址字节单元中,字的低字节存储在高地址字节单元中。

小端模式(高高低低):字的高字节存储在高地址字节单元中,字的低字节存储在低地址字节单元中。


三、ARM处理器工作状态

从编程的角度来看,ARM微处理器的工作状态一般ARM和Thumb有两种,并可在两种状态之间切换。

1、ARM状态:此时处理器执行32位的字对齐ARM指令,绝大部分工作在此状态。

2、Thumb状态:此时处理器执行16位的半字对齐的Thumb指令。


四、ARM处理器工作模式

1、用户模式(usr,User Mode):ARM处理器正常的程序执行状态。

2、快速中断模式(fiq,Fast Interrupt Request Mode):用于高速数据传输或通道处理。当触发快速中断时进入此模式。

3、外部中断模式(irq,Interrupt Request Mode):用于通用的中断处理。当触发外部中断时进入此模式。

4、管理模式(svc,Supervisor Mode):操作系统使用的保护模式。在系统复位或执行软件中断指令SWI时进入。

5、数据访问中止模式(abt,Abort Mode):当数据或指令预取中止时进入该模式,可用于虚拟存储及存储保护。

6、系统模式(sys,System Mode):运行具有特权的操作系统任务。

7、未定义指令中止模式(und,Undefined Mode):当未定义的指令执行时进入该模式,可用于支持硬件协处理器的软件仿真。

除了用户模式之外,其余六种模式都是特权模式。除了用户模式和系统模式之外,其余五种模式都是异常模式。

在特权模式下程序可以访问所有的系统资源。非特权模式和特权模式之间的区别在于有些操作只能在特权模式下才被允许,例如直接改变模式和中断使能等。而且为了保证数据安全,一般MMU会对地址空间进行划分,只有特权模式才能访问所有的地址空间。而用户模式如果需要访问硬件,必须切换到特权模式下,才允许访问硬件。


五、ARM处理器寄存器组织

ARM共有37个32位寄存器,其中31个为通用寄存器,6个为状态寄存器,包括R0-R15,R8_fiq-R14_fiq,R13_svc,R14_svc,R13_abt,R14_abt,R13_irq,R14_irq,R13_und,R14_und,CPSR,SPSR_fiq,SPSR_svc,SPSR_abt,SPSR_irq,SPSR_und。如图。

通用寄存器包括R0-R15,可以分为3类:

1、未分组寄存器R0-R7

在所有运行模式下,未分组寄存器都指向同一个物理寄存器,他们未被系统用作特殊的用途。因此在中断或异常处理进行异常模式转换时,由于不同的处理器运行模式均使用相同的物理寄存器,所以可能造成寄存器中数据的破坏。

2、分组寄存器R8-R14

对于分组寄存器,他们每次所访问的物理寄存器都与当前的处理器运行模式相关。具体如上图。

R13常用作存放堆栈指针,用户也可以使用其他寄存器存放堆栈指针,但在Thumb指令集下,某些指令强制要求使用R13存放堆栈指针。

R14称为链接寄存器(LR,Link Register),当执行子程序时,R14可得到R15(PC)的备份,执行完子程序后,又将R14的值复制回PC,即使用R14保存返回地址。

3、程序计数器PC(R15)

寄存器R15用作程序计数器(PC),在ARM状态下,位[1:0]为0,位[31:2]用于保存PC;在Thumb状态下,位[0]为0,位[31:1]用于保存PC。

由于ARM体系结构采用了多级流水线技术,对于ARM指令集而言,PC总是指向当前指令的下两条指令的地址,即PC的值为当前指令的地址值加8个字节。


六、程序状态寄存器CPSR和SPSR

CPSR(Current Program Status Register,当前程序状态寄存器),CPSR可在任何运行模式下被访问,它包括条件标志位、中断禁止位、当前处理器模式标志位以及其他一些相关的控制和状态位。


每一种运行模式下都有一个专用的物理状态寄存器,称为SPSR(Saved Program Status Register,备份的程序状态寄存器),当异常发生时,SPSR用于保存当前CPSR的值,从异常退出时则可由SPSR来恢复CPSR。


由于用户模式和系统模式不属于异常模式,这两种状态下没有SPSR,因此在这两种状态下访问SPSR,结果是未知的。

CPSR保存数据的结构:

1、N(Negative):当用两个补码表示的带符号数进行运算时,N=1表示结果为负,N=0表示结果为正数或零

2、Z(Zero):Z=1表示运算结果为0,Z=0表示运算结果非零

3、C(Carry):有4种方法可以设置C的值:

(1)加法指令(包括比较指令CMP)

(2)当运算产生进位时(无符号数溢出),C=1,否则C=0

(3)减法运算(包括比较指令CMP)

(4)当运算产生了借位(无符号数溢出),C=0,否则C=1

对于包含移位操作的非加/减运算指令,C为移出值的最后一位。对于其他的非加/减运算指令,C的值通常不变。

4、V(Overflow):有2种方法设置V的值:

(1)对于加/减法运算指令,当操作数和运算结果为二进制的补码表示的带符号数时,V=1表示符号位溢出。

(2)对于其他的非加减法运算指令,V的值通常不变。

5、I(Interrupt Request):I=1表示禁止响应irq,I=0表示允许响应

6、F(Fast Interrupt Request):F=1表示禁止响应fiq,F=0表示允许响应

7、T(Thumb):T=0表示当前状态位ARM状态,T=1表示为Thumb状态

8、M4-M0:表示当前处理器的工作模式,如图:

七、工作模式的切换

(1)执行软中断(SWI)或复位命令(Reset)指令。如果在用户模式下执行SWI指令,CPU就进入管理(Supervisor)模式。当然,在其他模式下执行SWI,也会进入该模式,不过一般操作系统不会这么做,因为除了用户模式属于非特权模式,其他模式都属于特权模式。执行SWI指令一般是为了访问系统资源,而在特权模式下可以访问所有的系统资源。SWI指令一般用来为操作系统提供API接口。

(2)有外部中断发生。如果发生了外部中断,CPU就会进入IRQ或FIQ模式。

(3)CPU执行过程中产生异常。最典型的异常是由于MMU保护所引起的内存访问异常,此时CPU会切换到Abort模式。如果是无效指令,则会进入Undefined模式。

(4)有一种模式是CPU无法自动进入的,这种模式就是System模式,要进入System模式必须由程序员编写指令来实现。要进入System模式只需改变CPSR的模式位为System模式对应的模式位即可。进入System模式一般是为了利用System模式和用户模式下的寄存器相同的特点,因此一般情况下,操作系统在通过SWI进入Supervisor模式后,做一些操作后,就进入System模式。

(5)在任何特权模式下,都可以通过修改CPSR的MODE域来进入其他模式。不过需要注意的是由于修改的CPSR是该模式下的影子CPSR,即SPSR,因此并不是实际的CPSR,所以一般的做法是修改影子CPSR,然后执行一个MOVS指令来恢复执行某个断点并切换到新模式。

关键字:ARM  体系结构  编程模型 引用地址:ARM体系结构与编程模型的总结

上一篇:基于LPC2368嵌入式的软件设计
下一篇:基于ARM的LED自适应调光系统设计

推荐阅读最新更新时间:2024-11-10 00:23

ARM汇编语言 - 简介 [一]
说明:本系列文章将主要以ARMv7和ARMv8架构为例,介绍ARM汇编语言的一些基础知识。关于ARM汇编语言的学习,这里我要推荐一本书和一个网站,其中书是由宋岩翻译的《Cortex-M3权威指南》,其文笔风趣幽默,引人入胜,网站则是 azeria-labs 。当然,ARM官方的Architecture Reference Manual更是重要的参考。 说起与系统结构相关的汇编语言,自然要先介绍该体系结构的寄存器组成。ARMv7相较于同为32位的x86,寄存器的数量要多一些,名称和配置也不尽相同,但两者还是有一个基本的对照关系: ARMv7-A在设计之初,就有和之前系列的处理器(比如以ARM9系列为代表的ARMv5)兼容的七
[单片机]
<font color='red'>ARM</font>汇编语言 - 简介 [一]
keil(MDK-ARM)的调试使用
现在软件的模拟功能都是非常强大,但是有时候会用不好。 原文地址: 那就看这里吧:http://www.cnblogs.com/strongerHuang/p/5596355.html 1.编译+调试 打开软件工程 - 编译 - 调试 这里的编译建议使用Build Target(第2个按钮)编译工程(如下图动画),也就是使用快捷键F7。Translate(第1个按钮)是编译当前活动文件。Rebuild all Target files(第3个按钮)是重新编译所有目标文件。 在线调试分类:软件在线调试和硬件在线调试;由于现在硬件成本比较便宜,一般我们都使用硬件在线调试,也就是软件直接下载到芯片,我们查看运行状态。 2.复位+全
[单片机]
Linux内核中ARM中断实现详解request_irq()、free_irq()
Request_irq()调用的定义: int request_irq(unsigned int irq, void (*handler)(int irq, void *dev_id, struct pt_regs *regs), unsigned long irqflags, const char * devname, void *dev_id); irq是要申请的硬件中断号。具体应是何值参见博文 http://blog.csdn.net/songqqnew/article/details/6791602 。 handler 是向系统注册的中断处理函数,是一个回调函数,中断发生时,系统调用这个函数,dev_id参数将被传递给它
[单片机]
ARM编程中的ARM Boot 示例
程序主要作用是通过串口下载VxWorks到ARM Flash ROM,主要过程是初始化ARM硬件,初始化串口UART1,从串口接收VxWorks image到DRAM,初始化Flash ROM.最后将DRAM中的VxWorks写入Flash ROM. arm 串口与PC机串口连接,由PC机下载(download)VxWorks 到主板Flash ROM. 该程序对学习和理解arm编程很有帮助.为了便于理解,这里我全部采用实际地址,不用宏定义. 程序语言为 arm 汇编,具体过程参考arm编程 ,具体寄存器接口定义参见arm硬件手册 VramBaseAddress EQU 0xC0000000 ;DRAM起始地址,
[单片机]
基于LPC2220FBD144型ARM7芯片实现配电综合测控仪的应用方案
为了能对大量负荷进行在线监控。很多公司较早地研制了基于单片机技术,能对配电变压器或配电线路负荷运行参数、电容器投切、电量采集等进行综合监控的配电综合测控仪。 但是,由于供电系统负荷的复杂性,特别是用户非线性负荷的大量使用,企业对谐波等电能质量问题越来越重视,因此,对配电综合测控仪的要求也随之提高,而且普遍要求增加谐波、频率监测和通信组网等功能。为了解决这些问题。本文以PHILIPS公司的ARM7芯片LPC2220FBD144为核心,研制出了新一代的配电综合测控仪。 1 硬件电路设计 1.1 硬件电路总体结构 本装置的硬件结构框图如图1所示,它主要由数据采集、运算处理、数据存储、键盘显示、通信接口等单元组成。其中运算处理单元
[单片机]
基于LPC2220FBD144型<font color='red'>ARM</font>7芯片实现配电综合测控仪的应用方案
Arm CoreLink MMU-600可为优质内容保护系统节省超过10亿美元
电子网消息,Arm发布了新一代System MMU,CoreLink MMU-600,旨在保护实时、低延迟且高带宽的4K内容。媒体内容保护依靠CoreLink MMU-600部署TrustZone Media Protection v2 (TZMP2)。 TZMP2系统利用主侧过滤避免大量的用于保护媒体的系统内存拆分。这样一来,CoreLink MMU-600在加电时不再需要像当前系统那样去分配专门的内存空间,每台设备可节省大约3美元。鉴于全球销售的设备数量,可以为整个行业节省超过10亿美元。 CoreLink MMU-600基于Arm SMMUv3.1 规格,经过重新设计,可以兼容Armv8.2页表。 CoreLin
[半导体设计/制造]
ARM芯片S3C2440A智能小车可移动视频监控系统
  本文介绍的智能小车可移动视频监控系统,以“飞思卡尔杯”智能小车竞赛提供的车模装置为基础,利用ARM芯片S3C2440A控制图像采集、网络传输、速度采集干扰小的模块,利用FPGA芯片控制电机驱动、舵机控制、电量采集干扰大的模块,当上位机通过Internet访问智能小车服务器时,在监控界面上点击按钮来控制小车的运行、图像拍摄、速度采集。   1 系统总体设计   该系统采用三星公司的ARM芯片S3C2440A作为主控制芯片及Altera公司的FPGA芯片EP2C5T144C8作为辅助控制芯片,ARM上装有Windows CE5.0操作系统。S3C2440A内置丰富的外设资源包括中断控制器、GPIO、I2C、相机接口等接口电路,
[单片机]
<font color='red'>ARM</font>芯片S3C2440A智能小车可移动视频监控系统
基于gnu-arm-linux的LPC2220的简单工程模板
1:源头 我们学习arm嵌入式开发,一般接触到的是ADS1.2、kei的工程模板,这些模板对初学者入门来说是一种福音,但是想深入了解一下芯片启动过程、 编译和链接、映像文件结构、如何初始化、移植标准库等这些内容的话,这些商业IDE就显得隐藏了很多细节,不利于进一步学习。基于上述缘由, 我写了一个基于gnu arm-linux开发环境的LPC2220的简单工程,此工程实现了芯片开机初始化、加载映像到运行映像的转换、ZI段的清零、堆栈 的设置、引导高层C语言函数、移植标准库、在高层实现了printf用于调试。 2:例程实现的功能 初始化LPC2220芯片: 1,实现LPC2220中断向量表。 2,设置ARM芯片各个模式运行时所
[单片机]
基于gnu-<font color='red'>arm</font>-linux的LPC2220的简单工程模板
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved