基于ADμC7024微处理器在医疗脉搏血氧计中的应用

发布者:calmrs最新更新时间:2020-07-24 来源: 51hei关键字:ADμC7024  微处理器  在医疗脉搏血氧计 手机看文章 扫描二维码
随时随地手机看文章

引言

随着信息技术的迅猛发展和人民生活水平的提高,极大地推动了医疗电子设备的发展,当今医疗电子设备的发展趋势是高精度、实时性、低功耗和小尺寸,作为医疗电子设备中核心地位的MCU(微处理器)也随着这一发展趋势向前不断衍变着。由早期的8位MCU发展到目前的32位RISC(精简指令集计算机)MCU。美国ADI公司根据市场的需要最新推出了一款基于ARM(高级精简指令集计算机)核的微处理器ADμC7024便是目前32位RISC MCU的杰出代表。ADμC7024卓越的处理能力、集成众多片上外围器件和芯片低功耗的特点,完全胜任目前医疗电子设备的需求及未来的发展目标。


本文以ADμC7024在医疗电子中监护产品脉搏血氧计的应用为例,重点介绍其在医疗电子行业中的实际用途。


1、ARM内核特点

英国ARM公司是嵌入式RISC处理器的IP(知识产权)供应商,它为ARM架构处理器提供ARM处理器内核(如ARM7TDMI、ARM9TDMI及ARM10TDMI等)。由各半导体公司在上述处理器内核基础上进行再设计,嵌入各种外围和处理部件,形成各种MCU。目前基于ARM内核的芯片在嵌入式处理器市场上占据75%的份额。


ARM作为嵌入式系统的处理器,具有低电压,低功耗和高集成度等特点,并具有开放性和可扩充性。事实上,ARM内核已成为嵌入式系统首选的处理器内核。而对于医疗电子设备而言,并不需要图像处理等方面更高的要求,因此,ARM7TDMI内核以0.9MIPS(百万条指令每秒)/MHz的高效处理能力足以满足应用需要。


ARM7TDMI内核是ARM核系列中32位通用内核中的一个产品,它采用三级流水线结构,指令的执行分成取指、译值和执行3个阶段。运算器能够实现32位整数运算。内核不但能够执行32位高效ARM指令,同时还支持简洁的16位Thumb指令集以提高代码密度。


ARM7TDMI名称的含义为:

a)ARM7:ARM系列具有32位运算能力的内核,它采用冯·诺依曼结构,数据长度可以是8位,16位和32位,而指令长度是32位。

b)T:内含16位压缩指令集Thumb,由于32位RISC型处理器的指令代码利用率较低,ARM为了弥补不足,在新型ARM架构(V4T版以上,成熟架构由V3版发展到V6版)定义了16位的Thumb指令集,Thumb指令集比通常的8位和16位CISC/RISC处理器具有更好的代码密度,而芯片面积只增加6%,可使程序存储器更小。

c)D:支持片内调试,该内核包含用于调试的硬件结构,可使CPU进入调试模块,可以方便地进行断点观察点设置、单步调试和多步调试。

d)M:采用增强型乘法器。AARM7TDMI指令集包含2个32位×32位的乘法指令和2个乘法累加MAC指令,该结构使得指令的执行比其他类型的ARM7内核减小了许多机器周期。

e)I:内含嵌入式ICE宏单元,ARM架构的处理器芯片都嵌入了Embedded ICE-RT逻辑块,便于通过JTAG接口来仿真调试RAM架构芯片。


2、芯片内部结构及特点

美国ADI公司利用其在模拟电路领域的优势,综合基于8052-8位ADμC8xx的技术积累,将ARM7TDMI内核和ADC(A/D转换器),DAC(D/A转换器)等外围设备集成在一块芯片上,就是最近推向市场的拳头产品ADμC702x系列。其中ADμC7020、ADμC7021、ADμC7022、ADμC7026等芯片除了在片上Flash和SRAM容量大小、ADC和DAC通道数量、PWM(脉宽调制)相位数量有差别外,其他完全一致;而ADμC7026,ADμC7027具有外部扩展内存接口。

本文主要介绍其中具有代表性的一款--ADμC7024,工业级的ADμC7024工作于2.7V-3.6V电源电压,64引脚CSP封装的芯片面积仅为9mm×9mm,在1MHz时钟频率下芯片最高功耗为5mA,在最大时钟频率45MHz下芯片最高功耗为60mA。其原理框图如图1所示。

基于ADμC7024微处理器在医疗脉搏血氧计中的应用

2.1 片上集成高性能的ADC和DAC

ADμC7024片上集成了10通道12位逐次逼近型ADC,能够在电源电压为2.7V-3.6V的范围正常工作,在系统时钟频率为45MHz下的最高采样率高达1MSPS(百万次采样每秒)。该ADC模块提供一个高精度、低漂移的片上2.5V基准电压VREF,该电压通过片上REFCON寄存器的软件配置也能作为输出,向外提供基准参考源。ADC能够工作于单端转换模式或者差分转换模式,在单端转换模式下的输入电压范围是0至VREF,在差分转换模式下输入电压范围是0至AVDD(AVDD通常情况下为3.3V)ADC单个或连续的转换能够被外部引脚CONVstar、片上PLA、定时器1或定时器2所触发。


通过ADC控制寄存器ADCCON,通道选择寄存器ADCCP和ADCCN软件配置好ADC后,转换结果将存储在寄存器ADCDAT位27至位16中,通过ADC状态寄存器ADCSTA的位0可以查看ADC转换是否完成,当ADC转换结束时,位0被置位;当读取ADC-DAT时,该位自动被清空。当ADC正在执行转换操作时,片上引脚ADCBusy保持高电平,一旦转换结束,该引脚马上变为低电平。


还可以通过ADCRST寄存器将ADC模块中所有寄存器恢复至默认值;通过调整ADCOF和ADCGN寄存器的值可以调整ADC转换精度,不过,该寄存器出厂时已经过校准。


由于该ADC的是逐次逼近型结构,因此比较适合低功耗的产品应用。


ADμC7024片上还集成有2通道12位DAC。每个DAC都具有轨至轨的输出电压范围,驱动能力可达100pF或者5kΩ,每个DAC也能通过软件配置来选择输出范围0至VREF(内部基准电压)、0至DACref(外部基准电压)和0至AVDD,而DACref的取值范围是0V至AVDD。


DAC的使用十分简单,通过DAC控制寄存器DAC0CON或者DAC1CON来选择通道和配置DAC通道特性,然后通过向DAC0CON或DAC1CON的位27至位16写入数值,就可以在DAC引脚上得到所需要的模拟电压结果。


2.2 片上集成Flash寄存器和SRAM

ADμC7024片上集成了64KB的Flash存储器,其中低62KB的Flash存储器是用户可以编程的,剩下的高2kB区域是用户不可接触的固件程序,里面包含了在线串行下载程序及出厂配置默认方案。ADμC7024片上Flash存储器能够通过串行编程模式,JTAG编程模式或并行编程模式在系统中编程。


1)串行编程模式

当片上BM引脚芯片被拉低时,ADμC7024重启动将进入串行下载模式,通过标准的UART端口或IIC端口在线下载程序。

2)并行编程模式

并行编程协议使得片上Flash存储器能够通过工业级第三方编程器进行编程。

3)JTAG编程模式

ADμC7024片上Flash存储器完全遵守IEEE 1149.1规范,因而可以通过标准的JTAG接口来下载程序和进行调试代码,使得系统的开发十分简单易行。


而ADμC7024片上Flash存储器通过FEEPRO、FEEHIDE寄存器的软件设置可以防止程序通过JTAG接口或并行编程模式被读出,有效地保障了开发人员的劳动成果。


2.3 晶振和PLL

ADμC7024片上集成了一个32.768KHz晶振、一个时钟分频器和一个PLL(锁相环)。内部的PLL能够将晶振频率放大1376倍,即为系统提供一个稳定的45MHz。

为了降低系统功耗,可以通过软件设置时钟分频器的控制寄存器PLLCON和POWCON将经过PLL后输出的45MHz降频,最大可降低至352KHz,由于内部晶振有±3%的误差,因此,用户可以选择外接一个32.768kHz的晶振,通过软件设置PLLCON值使用外部晶振,使系统的性能稳定可靠。


2.4 复用I/O及标准的UART、SPI、IIC

ADμC7024提供30个通用型双向I/O引脚。所有的I/O引脚具有5V电压耐压能力,一些I/O引脚中与其他外围设备引脚复用。在默认情况下,所有的GPIO都是I/O模式,如果在实际中需要将I/O口复用成其他情况的,只需要按照I/O控制配置寄存器GPxCON的手册配置方案软件编程即可(这里x表示端口0,端口1,…,端口4,如1端口5引脚则是P1.5)。在配置成I/O情况下,可以通过置位数据寄存器GPxDAT中某些位的值使引脚输出“1”;同时可以清除数据寄存器GPxDAT中的某些位的值使引脚输出“0”;还可以读数据寄存器GPxDAT中某些位的值得到输入引脚的值(x同前面介绍,具体设置请参考ADμC7024手册)。


ADμC7024片上集成了2个标准的、全双工模式的异步串口UART(通用异步收发器),它们与16450串口标准所兼容。片上UART的波特率产生器中包含一个小数分频器,使得UART波特率的产生更加精确。同时,其中一个UART还支持网络寻址模式下的串口发送接收模式。UART的使用首先通过I/O的配置成UART端口引脚。然后通过软件配置UART配置寄存器及波特率设定寄存器就可以通过COMTX寄存器、COMRX寄存器分别发送和接收数据。


ADμC7024片上也集成了标准工业级同步串口SPI(串行外围接口),SPI接口可以同步接收和发送8位数据,最高速率可达5.6Mbit/s。该SPI能够被配置成主(Master)或者从(Slave)两种工作模式,关于SPI使能、选择工作模式、串行时钟相位及极性、先发送低有效位还是高有效位等多项设置,均是通过SPICON编程而得到,而主模式发送的串行时钟频率由SPIDIV来设定,从模式则不用设定串行时钟频率,因为串行时钟是由主模式的SPI来决定的,通过读取SPISTA中某些数据位的值,可以知道SPI是否发送结束或者接收结束。


ADμC7024还具有两个经Philips公司授权的IIC接口,IIC是Philips公司20世纪80年代开发的一个简单的两线总线,包括一条数据线和一条时钟线,速率有100kHz和400kHz两种方式,目前IIC已经成为重要的全球业界标准,被所有主要的集成电路厂商所认同和使用。它采用主-从通信方式,采用总线仲裁特性,使得在某一时刻只有两个器件进行通信,具体数据指标参考ADμC7024数据手册。


2.5 中断系统

中断系统是一个MCU在应用中的灵魂所在。ADμC7024片上中断控制器控制着24个中断源。这些中断源包括片上ADC中断、UART中断、2个外部中断请求XIRQ0和XIRQ1等,而ARM7TDMI内核仅仅将这些中断源分成两大类来识别,一类是IRQ,另一类是FIQ。所有中断源能够单独地被屏蔽。中断系统的控制和配置管理由9个关于中断方面的寄存器所控制,4个涉及到IRQ的寄存器、4个涉及到FIQ的寄存器,1个用来选择已编程的中断源寄存器SWICFG。虽然作为一个已编程的中断源是不能够被屏蔽掉的,但是它们可以被SWICFG来控制。


2.6 定时器

ADμC7024有4个通用定时器:定时器0、定时器1、定时器2和定时器3。这4个定时器在一般的操作模式下均能按照默认值计数或者按照预设值寄存器TxLD(x表示0,1,2,和3中的某一个寄存器)中值来计算。在任意时刻可以通过读取TxVAL寄存器中的值了解定时器中的当前计数值。通过配置TxCON的值可以设置相应的定时器按照一定的方式开始计数。

定时器0是一个通用型16位倒计数定时器,该定时器的刻度尺频率来源是系统时钟,计数默认值可以是系统时钟频率、系统时钟频率的16分频和256分频。


定时器1是一个32位通用型累加定时器或者倒计时定时器。该定时器的刻度尺频率来源可以是32kHz晶振、系统时钟和外部GPIO三者之一。计数默认值可以是刻度尺频率、刻度尺频率的16分频、256分频和32768分频。定时器1可以被设置为标准的32位时间值,如Hours:Minutes:Seconds:Hundreths这样的格式。定时器1通过预设响应IRQ事件,可以比通常情况下定时器0响应IRQ中断请求要准确得多。它还可以用来触发ADC转换过程。


定时器2的系统刻度尺频率来源是内部集成的32.768kHz晶振,当系统时钟停止工作时,该定时器还可以继续运行,这一特性可以用来将处于休眠状态的系统内核恢复至正常工作状态。


定时器3由两种工作模式,一种通常模式与前面3个定时器一样,还有一种是看门狗模式。一旦程序跑飞时,可以利用该定时器看门狗模式来重启动处理器,令其恢复正常工作。


2.7 其他外围设备及特性

片上还集成有独立的比较器、电源监控模块、三相PWM(在ADμC7020、ADμC7021、ADμC7022是单相PWM)以及PLA(可编程逻辑阵列)。其中PLA的输入输出引脚与GPIO复用。

3、引脚定义

ADμC7024引脚定义见表1。

4 、应用实例

该芯片卓越的数据处理能力、片上集成的高精度ADC及DAC等丰富的片上外围设备以及时钟频率可调节的特点,使得在要求低功耗、高精度、实时性等嵌入式微信号处理系统中的应用如鱼得水。现以脉搏血氧计为例,介绍其中一个广泛的应用领域。其系统框图如图2所示。

ADμC7024作为系统的核心MCU,负责控制和协调其他电路模块的正常工作,它将采集到的血氧信号经过数据处理后,通过SPI总线传送给LCD显示屏得以显示。


根据实际临床结果显示,ADμC7024已完全胜任设计血氧模块的任务,处理能力、采样率、采样精度、功耗、实时性要求等指标完全达到系统的要求,ARM体系架构使得医疗电子的稳定性得到极大保障。最后,采用第三方Keil公司μVision开发工具,用C语言作为开发语言,利用GNU的ARM-ELF-GCC等工具作为编译器及链接器,易学易用,它的调试仿真工具也是Keil公司开发的Ulink仿真器,调试简单,缩短上市时间,便于移植。


可以预料,在不久的将来,ADμC7024以其独树一帜的性能必将在医疗电子行业中发挥越来越大的作用。

关键字:ADμC7024  微处理器  在医疗脉搏血氧计 引用地址:基于ADμC7024微处理器在医疗脉搏血氧计中的应用

上一篇:基于FIE8100 SoC平台实现Linux软件开发套件的设计
下一篇:基于ARM、WiFi和蓝牙实现农田生产检测管理系统的设计

推荐阅读最新更新时间:2024-11-18 21:23

德州仪器免费 IQmath Library 为使用 C2000™ 与 Stellaris® 微处理器的开发人员带来浮点技术的易用性与高精度
日前,德州仪器 (TI) 宣布,其免费 IQmath Library 现在支持 32 位 C2000 与 Stellaris 平台,可为使用定点微控制器 (MCU) 的开发人员实现浮点技术优势。TI IQmath Library 是一套业经验证的优化型高精度数学函数,可帮助编程人员将浮点算法无缝移植到定点代码中。开发人员可使用软件获得比采用标准 ANSI C 语言编写的同等代码更快的极高执行速度,这对电机控制、数字电源、安全以及人机界面等计算密集型应用都具有十分重要的意义。此外,IQmath Library 还可避免耗时的扩展与高强度任务,从而可显著加速开发进程,解决定点数学的局限性。更多详情,敬请访问: www.ti.co
[单片机]
嵌入式和单片机到底有什么区别?
嵌入式系统是一种专用计算机系统,它可以控制产品、设备或系统的操作。嵌入式系统可以包括硬件、软件和固件等组件。单片机则是嵌入式系统的核心部件之一,它通常集成了微处理器、内存和输入输出接口等组件,使其能够承载多种任务。 在嵌入式系统中,单片机是一个重要的组件,也是将软件和系统硬件紧密结合的关键部分。单片机继承了传统的微处理器的所有优点,同时又集成了内存、外设和输入输出接口等元件,从而可以高效地控制嵌入式系统。 单片机的主要特点是集成度高、功耗低、体积小、功能强大及性价比高。这些优势使得单片机广泛应用于家电、汽车、通信等行业领域的嵌入式系统中。 在嵌入式系统设计中,单片机可以充当控制器,负责实现各种复杂的功能。在实现复杂功能
[单片机]
基于S3C2440微处理器的工业超声探伤仪设计
  超声探伤仪广泛应用在航空航天、石油化工、冶金造船等行业,用于检测金属或非金属内部缺陷以及分析材质,是无损检测领域重要的检测仪器之一。   超声探伤时,应用得最多的是A型显示,如图1所示。在A型显示中,横坐标代表被测物的深度,纵坐标代表回波信号的幅度。   目前同内生产的数字式超声探伤仪仍主要以单片机为核心,单片机固有的性能瓶颈制约了仪器的性能指标和功能扩展,与国外先进水平相比,国产产品技术水平仍有较大的差距。   本文介绍的新型嵌入式数字超声探伤仪以32位RISC CPUS3C2440为控制中心,以高性能FPGA Spartan3为信号采集及处理核心,并辅以功能强大的Linux操作系统和MiniGUI图形库,实现了一
[嵌入式]
应用RC低通滤波器扩展微处理器输出端口
摩尔定律形成一个几乎必然的推论 下一年,微处理器将会拥有更多的功能,而软件团队则会提出更多创意。然而不幸的是,微处理器输出端口仍保持原样。找到一个用作测试、调试或是标准I/O口的空闲输出端是件相当困难的事。外加简单硬件,如图1所示电路实现单端口 总线 ,提供无限量的并行输出端。 图1 HC164外围电路图 带RC低通滤波器的微处理器输出端控制串并转换器HC164。为了数据输入到串并转换器,每位都要由1-0-1的转换组成,这种转换数据低电平状态长度是变化的。如果低电平状态超出了低通滤波器的时间常数,一个零移进寄存器;如果低电平状态短,一个1就移进寄存器。这样,时钟信号和数据信号就合并成为一个信号。低通滤波器可以分离时钟信号和数
[单片机]
应用RC低通滤波器扩展<font color='red'>微处理器</font>输出端口
微处理器和多处理器片上系统MPSOC设计的新纪元
可配置处理器标志着第四代微处理器设计的开始,这种技术更加适合片上系统SOC的设计。每一代处理器持续大约十年时间,每个时代的处理器适合当时那个时期的需要。大约在二十世纪七十年代出现了第一代处理器,这个时期的处理器设计只是简单地追求性能,从4位处理器到早期的16位和32位微处理器。这种性能的提升奠定了二十世纪八十年代个人计算机PC和工作站的基础。个人计算机和工作站的增长使得微处理器设计进入了二十世纪八十年代的第二代微处理器研制时期。精简指令集RISC设计时代发生在二十世纪九十年代。在这个时期,即使像X86这样坚定的复杂指令集CISC处理器也假装成精简指令集RISC体系结构。在最初的这三代处理器的成长和发展过程中,微处理器设计专家将处理器
[单片机]
<font color='red'>微处理器</font>和多处理器片上系统MPSOC设计的新纪元
意法半导体新一代微处理器SPEAr1310,整合DDR3内存接口
全球系统级芯片(SoC)技术的领导厂商意法半导体发布业内首款整合双ARM Cortex-A9 内核和DDR3(第三代双速率)内存接口的嵌入式处理器。新产品SPEAr1310采用意法半导体的低功耗 55nm HCMOS(高速CMOS)制程,为多种嵌入式应用提供高计算和定制功能,同时兼具系统级芯片的成本竞争优势。 新 微处理器 整合超低功耗技术和ARM Cortex-A9处理器内核的多任务处理功能,以及创新的片上网络(NoC)技术。双核ARM Cortex-A9处理器可全面支持对称和不对称运算,处理速度高达每核600MHz(在恶劣的工业环境中),相当于 3000 DMIPS。片上网络是应用灵活的通信架构,可支持多路不同的流
[工业控制]
基于IP核复用的微处理器FSPLCSOC模块
1 引言 文中采用IP核复用方法和SOC技术基于AVR 8位微处理器AT90S1200IP Core设计专用PLC微处理器FSPLCSOC模块。 随着芯片集成程度的飞速提高,IC产业中形成了以片上系统SOC(System-on-Chip)技术为主的设计方式。一个电子系统或分系统可以完全集成在一个芯片上,同时IC设计能力和EDA工具却相对落后于半导体工艺技术的发展,两者之间日益加剧的差距已经成为SOC技术发展过程中一个突出的障碍。采用基于IP复用技术进行设计是减小这一差距惟一有效的途径,IP复用技术包括两个方面的内容:IP核生成和IP核复用。 2 IP核复用 IP核复用(IP Core Reuse)是指在集成电
[嵌入式]
基于ARM 微处理器的机载语音告警系统设计
  飞机语音告警系统是新型飞机必备的一种机载设备,其作用是将飞机当前的工作状态、危险状况或者通过数据链获取的作战任务命令,实时以语音方式告知飞行员 。在飞机飞行过程中飞行员一般是通过安装在座舱里的操作台、仪表和告警信号灯来了解飞机各个系统的工作状态。由于飞行员在飞行时为完成相应的飞行任务, 注意力高度集中在飞行高度、速度和雷达参数等数据信息上,对飞机故障信息的注意力要相对弱一些,这样就会出现飞行员不能及时地对故障采取措施,从而导致严重的飞行事故。同时,目前大多数新研制或改装的飞机都有数据链系统,许多作战任务命令不再单纯依靠地面指挥人员或长机的语音传达,可通过数据链或根据战场态势产生,并及时告知飞行员,因此,针对某新型飞机的研制要求
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved