Zynq7000的柔性直流输电桥臂控制器设计

发布者:iota19最新更新时间:2021-05-26 来源: 21ic关键字:Zynq7000  控制器 手机看文章 扫描二维码
随时随地手机看文章

引言


柔性直流输电技术是基于电压源换流器(VSC)的新一代直流输电技术,通过控制IGBT的通断来实现子模块投切状态的转换。阀控系统的桥臂控制器根据接收到的子模块16位电容电压和32位状态信息,生成子模块控制指令,并下发到每个子模块。由于子模块的数量比较多(一个桥臂为576个子模块),需要传输的数据量比较大(总共27.6 Kb),并且阀控系统对控制周期有严格的要求[1](控制过程严格控制在100 μs内)。


目前的桥臂控制器普遍采用DSP+FPGA的设计架构,FPGA将接收到的数据处理后传送给DSP,DSP对数据进行故障判断生成控制指令,FPGA读取控制指令并通过光纤发送到子模块。两者之间采用32位数据总线进行数据交互,数据传输速率低于1Gb/s,传输子模块数据大概需要30 μs,占用了控制周期较长的时间,降低了阀控系统的控制实时性。


Xilinx的Zynq7000系列芯片将FPGA和ARM集成到一个芯片上,两者之间可以通过64位的内存映射型AXI接口进行双向数据传输,理论带宽为9.6 Gb/s。ARM和FPGA直接通过AXI4数据总线进行通信,理论数据线宽度达到1 024位,对于突发长度,最多支持256位,能够极大地提高FPGA和ARM的数据通信传输率,保证系统实时运行[2]。


本文设计的桥臂控制器采用Zynqxc7z020芯片,使用AXI4总线取代了DSP+FPGA的数据总线,同时利用ARM 双核CortexA9处理子系统和丰富的外设资源,进一步提升了桥臂控制器的功能。


1 系统总体结构设计


本文所设计的桥臂控制器由集成在Zynqxc7z020内的双核ARM CortexA9 MPCore处理器(CPU0+CPU1)所控制,这两个处理器可以同时运行各自独立的操作系统和软件程序,而且可以通过片内RAM进行通信。


为了保证ARM对FPGA中断的实时响应,将CPU1配置为运行裸机程序,执行中断服务函数,主要完成故障检测和控制指令生成。而CPU0运行Linux操作系统,提供用户控制图形界面和网络通信等功能。CPU0和CPU1通过片内256K的RAM进行数据通信,这种双核架构称为不对称的多处理机系统(Asymmetric MultiProcessing,AMP)模式。


Zynqxc7z020芯片的FPGA接收到子模块的电容电压数据后,进行排序及冗余处理,然后利用AXI_Master_Connector的AXI总线IP核将数据转换为AXI4总线数据格式,通过ARM与FPGA的64位AXI HP(High Performance)高速接口传输到外部的DDR3中,数据传输完毕后,FPGA向ARM的CPU1发送一个中断请求。


ARM的CPU1接收到中断后,从DDR3内存读取数据并进行故障判断处理,同时通知CPU0的Linux操作系统,在图形界面实时显示数据变化并通过网口向后台发送事件信息。


CPU1数据处理完毕后,生成子模块控制指令并写入DDR3指定内存区,FPGA通过AXI_Master_Connector总线IP核从DDR3读取数据,并通过光纤发送到每个子模块。


运行Linux的CPU0作为主节点,提供HDMI图形界面,并负责系统上电硬件初始化、启动CPU1、将位配置文件烧写到FPGA中和升级系统软件等工作。方案的整体框架如图1所示。



2 硬件平台设计


桥臂控制器的硬件平台主要分为ARM和FPGA两部分。使用Xilinx XPS硬件设计软件,配置Zynq处理器中ARM部分的外设,如图2所示。



程序代码和FPGA的配置文件固化在外部QuadSPI Flash中,Enet0用来与后台进行网络通信,SD0可以挂接SD卡,I2C0用来挂接RTC8564JE芯片,I2C1控制器配置HDMI输出芯片Sil9134,系统使用UART1输出调试信息。


FPGA部分的硬件平台包括数据预处理的IP核、AXI总线控制IP核(IN_AXI_MASTER和OUT_AXI_MASTER),以及产生中断的irq_gen_0 IP核,构建了FPGA、ARM和DDR3的数据流通道[3],如图3所示。



添加AXI总线控制IP核时,需指定AXI协议为AXI4,数据带宽为64位(最高1 024位),并将ARM与FPGA的64位AXI HP接口映射到DDR3内存的高端1 MB地址(0x3FF0 0000~0x3FFF FFFF),用来存储接收到的子模块数据以及生成的控制指令[4]。


3 嵌入式软件设计


Zynqxc7z020芯片是以ARM作为核心的,上电后的运行流程如下:


① 进入FSBL(First Stage Boot Loader),对电路板进行配置初始化;


② 将位文件烧入FPGA,FPGA按照位中的方式运行;


③ 进入SSBL(Second Stage Boot Loader),uboot初始化操作系统的运行环境,引导Linux内核,随后将控制权交给双核ARM中的CPU0,CPU0负责启动响应FPGA中断的CPU1。


3.1 FSBL软件设计


FSBL主要完成Zynqxc7z020芯片的启动、内存的初始化、I/O的中断初始化,以及HDMI的配置。其中,HDMI接口芯片Sil9134通过IIC1来配置。


FSBL中I2C的主要C程序如下:


//初始化I2C控制器


XIicPs_LookupConfig(…);


XIicPs_CfgInitialize(…);


//设置I2C时钟频率


XIicPs_SetSClk(…);


//发送数据


iic_writex(… );


通过配置Sil9134的0x72基址和0x7A基址两个寄存器,初始化芯片硬件,进入正常工作模式。


3.2 启动AMP工作模式


Zynqxc7z020芯片的ARM双核共享1G的DDR3内存、512K的L2 Cache和中断控制器,为了避免双核同时访问这些资源导致冲突,系统采用了以下措施:


① 在CPU0上运行的Linux使用DDR3内存的低端768 MB空间,CPU1使用随后的255 MB内存空间,高端的1 MB空间用来存储FPGA读写的数据。


② CPU1禁用L2 Cache,CPU0上的Linux完全占用L2 Cache。


③ FPGA发送给CPU1的中断使用私有中断控制器,发送给CPU0的中断使用共享中断控制器,两者互不干扰[5]。


Linux内核在CPU0启动成功后,此时CPU1处于休眠状态,会一直轮询0xFFFF FFF0地址处的数值,非零就把读取到的数值装载到PC寄存器,跳转到对应的地址执行指令。CPU0通过Linux的devmem命令把CPU1的DDR3内存起始地址0x3000 0000写入0xFFFF FFF0,启动CPU1:devmem 0xFFFF FFF0 0x3000 0000。


CPU1启动后,在主函数注册中断服务函数,当FPGA的数据中断发生时进入中断函数,进行故障判断并生成控制指令。因为CPU1运行的是裸机程序,其中断响应时间要比运行Linux的CPU0响应时间短。


3.3 系统软件升级


桥臂控制器在调试过程中经常需要对代码进行升级,而程序代码和FPGA的配置文件固化在外部QuadSPI Flash中,通过开启CPU0上Linux的SSH和FTP服务,使用网口可以重新烧写Flash中的文件,步骤如下:


① PC电脑通过FileZilla Client(Windows下的ftp工具)登录Linux的ftp服务器,将新的烧写文件上传到Linux的文件系统下;


② PC电脑通过putty(Windows下的ssh工具)登录Linux的root账号;


③ 在putty界面下,使用Linux自带的flashcp命令将上传的文件烧写到外部QuadSPI Flash。


桥臂控制器重启后,系统软件得到更新。


3.4 应用程序流程


系统程序流程如图4所示。



4 FPGA通信传输率测试


ARM和FPGA通过AXI4数据总线进行通信,数据带宽最高达到1 024位,本文主要测试了64位突发传输率。


对于64位突发传输,分别测试FPGA工作频率为50 MHz、100 MHz和150 MHz时,FPGA发送256个64位数据的用时,如表1所列。



由表1可以计算得出不同FPGA工作频率下,数据位宽为64位时的传输速率,如表2所列。



由表2可见,使用Zynqxc7z020芯片能够极大提高FPGA和ARM的数据传输速率。


结语


本文设计的桥臂控制器,采用Xilinx Zynqxc7z020芯片,使用AXI总线取代了以前的DSP+FPGA数据总线方式,实测的最高数据传输率达到8.9 Gb/s,极大地改善了阀控系统数据通信的实时性,同时简化了控制板卡的硬件设计,降低了板卡功耗,提升了系统的运行稳定性[6]。


利用芯片上集成的ARM CortexA9 MPCore双核处理器,搭建了AMP多系统架构,在保证系统实时响应FPGA中断的同时,移植了Linux操作系统,提供了人机交互界面,为桥臂控制器添加了新的控制功能,简化了柔性直流输电阀控系统的整体设计。

关键字:Zynq7000  控制器 引用地址:Zynq7000的柔性直流输电桥臂控制器设计

上一篇:分解ARM Cortex-M系列优先级设置问题
下一篇:基于S3C2410的嵌入式串口通信设计

推荐阅读最新更新时间:2024-11-10 23:52

基于DSP处理器的红外电视调焦控制器设计
1.引言 随着红外成像技术的快速发展,红外测量电视成为光电跟踪系统的重要组成部分。红外相机的自动和连续调焦,是保证红外电视成像质量,实现光电跟踪系统高精度稳定跟踪的关键技术。一般来说,影响红外电视成像的因素有很多,而目标的距离和环境温度等参数对成像质量影响较大,如何根据目标距离和环境温度等影响目标成像质量的信息,实时调整相机的位置,从而获得清晰的目标图像,需要进行广泛深入的研究,对实现红外跟踪测量系统稳定高精度跟踪测量功能具有重要意义。 2.调焦控制器的硬件设计 2.1 总体结构及原理 光电跟踪测量系统调焦控制系统要实现的功能主要包括:接收综合控制器的控制命令,实现红外电视的变倍与调焦功能,兼具自检功能和故障诊断能力,故障诊断到线
[嵌入式]
TI C2000 Piccolo 微控制器的突破性电机技术再次升级
日前,德州仪器 (TI) 为庆祝具有革命性突破的 TI InstaSPIN™-FOC(磁场定向控制)电机控制技术推出一周年,宣布推出一些令人振奋的全新升级。InstaSPIN-FOC 突破性电机技术一直帮助电机控制系统设计人员在几分钟内识别、调节和全面控制(通过不断变化的速度和负载)任何类型的三相位同步或异步电机。它无需机械转子传感器,不仅可降低系统成本,而且还可使用 TI 无传感器观察软件 FAST™(通量、角度、速度与扭矩)算法提高工作效率与可靠性,该算法嵌入在部分 TI 32 位 C2000 Piccolo™ 微控制器 (MCU) 的只读存储器 (ROM) 中。 TI InstaSPIN 电机技术市场营销经理 Ch
[电源管理]
DSP处理器的红外电视调焦控制器设计
1.引言 随着红外成像技术的快速发展,红外测量电视成为光电跟踪系统的重要组成部分。红外相机的自动和连续调焦,是保证红外电视成像质量,实现光电跟踪系统高精度稳定跟踪的关键技术。一般来说,影响红外电视成像的因素有很多,而目标的距离和环境温度等参数对成像质量影响较大,如何根据目标距离和环境温度等影响目标成像质量的信息,实时调整相机的位置,从而获得清晰的目标图像,需要进行广泛深入的研究,对实现红外跟踪测量系统稳定高精度跟踪测量功能具有重要意义。下面,小编就红外电视调焦 控制器 的设计给予简单介绍。 2.调焦控制器的硬件设计 2.1 总体结构及原理 光电跟踪测量系统调焦控制系统要实现的功能主要包括:接收综合控制器的控制命令,实现
[电源管理]
DSP处理器的红外电视调焦<font color='red'>控制器</font>设计
三路输出、降压 / 降压 / 升压型同步 DC/DC 控制器
中国,北京– 2018 年 1 月 30 日 – Analog Devices, Inc. (ADI) 宣布推出 Power by Linear™ 的 LTC7815 ,该器件是一款高频 (高达 2.25MHz) 三路输出 (降压、降压、升压)、同步 DC/DC 控制器,可在汽车冷车发动情况下将所有输出电压保持在稳压状态。12V 汽车电池在引擎重新起动或冷车发动期间会降至低于 4V,因而导致信息娱乐系统和其他依靠 5V 或更高电压供电工作的电子产品发生复位。高效率同步升压型转换器给两个降压型转换器馈电,可在汽车电池电压下降时避免出现输出电压压差,在怠速时关闭引擎以节省燃料的汽车启 / 停系统中,这是一个有用的特性。或者,降压型控
[电源管理]
三路输出、降压 / 降压 / 升压型同步 DC/DC <font color='red'>控制器</font>
高性能、高稳定,ST双通道交错式升压PFC控制器问市
STNRGPF12是意法半导体的双通道交错式升压PFC控制器,兼备数字电源的设计灵活性和模拟算法的快速响应性,控制器配置和优化的过程非常简单,使用意法半导体的eDesignSuite软件就可以轻松完成。 STNRGPF12适用于600W以上的应用,可提高各种产品设备的能效和可靠性,包括工业电机控制器、充电桩、不间断电源、4G和5G基站、电焊机、电信交换机、家用电器和数据中心电源。 STNRGPF12采用固定频率连续导通模式(CCM),具有平均电流模式控制功能。 STNRGPF12内外控制环兼顾数字和模拟性能,两全其美。内部电流环使用硬件模拟比例积分(PI)补偿器,外部电压环采用动态响应快速的数字PI控制器,这使得ST
[工业控制]
高性能、高稳定,ST双通道交错式升压PFC<font color='red'>控制器</font>问市
Atmel maXTouch S控制器助力Galaxy S4 Mini智能手机触摸屏
微控制器及触摸技术解决方案的领导厂商爱特梅尔公司(Atmel® Corporation) 宣布三星已经选择爱特梅尔的maXTouch® mXT336S器件,助力其新近发布的Galaxy S4 Mini 智能手机之触摸屏。 三星Galaxy S4 Mini智能手机使用1.7GHz双核处理器,并且运行于Android 4.2.2操作系统,采用4.3英寸高清晰度超级AMOLED显示屏和使用爱特梅尔maXTouch解决方案助力的触摸屏。mXT336S控制器通过功能丰富的解决方案,提供终极人机触摸界面,实现了更薄的手写笔和更厚的手套支持、更高的触摸精度和较少的无意触摸,以及更低的功耗,从而达到更长的电池寿命、更明亮的显示屏和更快的响
[手机便携]
天准科技-天准TADC系列高阶自动驾驶域控制器
技术描述: 基于地平线双征程5+芯驰X9U+芯驰E3平台的TADC-D52高配域控制器方案,面向城市NOA和记忆泊车、自动泊车、360环视等高阶自动驾驶场景;以及基于地平线单征程5+芯驰X9U+芯驰E3平台的TADC-D51中配域控制器方案,面向高速NOA和记忆泊车、自动泊车、360环视等自动驾驶场景。 1、天准TADC-D51自动驾驶域控制器 主要SOC:征程5、芯驰X9U AI算力:128TOPS CPU算力:28KDMIPS+100KDMIPS 相机接入能力:8M*3V+3M*8V 车载以太网:支持3路1000Mbps通信 防护等级:IP67 满足功能安全等级要求 满足高速高架NOA行泊一体 满足L2+场景智能驾驶
[汽车电子]
天准科技-天准TADC系列高阶自动驾驶域<font color='red'>控制器</font>
基于GD32F407VET6主控芯片的永磁同步电机控制器设计
作品选用GD32F407VGT6单片机作为主控芯片,将永磁同步电机的无感控制技术与单电流传感器控制技术两个研究热点相结合,利用单母线电流传感器实现永磁同步电机全速范围无位置传感器控制,主要创新点有: 1)提出一种准边沿对齐脉宽调制技术和单母线电流分时采样误差补偿方法,提高了单母线电流传感器电流检测精度; 2)提出单母线电流采样下的基准边沿对齐脉宽调制技术的全速无位置传感器控制策略,零低速采用高频方波注入位置估计,并结合模型参考自适应观测器,实现了高动态性能、高稳态精度的全速范围无位置传感器控制; 3)提出一种单母线电流采样下的动态零矢量注入初始位置估计方法,可以实现表贴式/内嵌式两类永磁同步电机的初始位置和转速估计,在电机具有大初
[嵌入式]
基于GD32F407VET6主控芯片的永磁同步电机<font color='red'>控制器</font>设计
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved