采用MSP430设计的12位心电(ECG)放大器

发布者:逍遥游侠最新更新时间:2021-06-16 来源: eefocus关键字:MSP430  ECG  放大器 手机看文章 扫描二维码
随时随地手机看文章

人体心肌产生的电信号传导到体表之后,由于在体表分布的不同而产生电位差,将这种电压只有mV级别的电位差放大并绘制成图,就得到了心电图(ECG)。心电图在心血管疾病的临床诊断中有非常重要的作用。通常采用的心电图按照导联数分有单导联,三导联,五导联以及十二导联等等;按照精度分常用的有8位和12 位精度等等。单导联,精度低的心电图常用于进行心电监控以及心率测量。12位高精度的心电图由于可以反映出心电的细微变化,被更加广泛地应用于临床诊断、心电分析等地方。


由于心电幅度只有mV量级,需要放大上千倍才能被观察到,并且人体的内阻比较大,因此一个高阻抗、高增益的放大器是准确获取心电信号的关键。而周围环境中充满了各种各样的电磁干扰,会严重影响微弱的ECG信号,而其中最为严重的是市电电源的50Hz(部分国家为60Hz)的干扰。如何避免这些干扰也是心电放大器设计所必须考虑的问题。此外,进行高精度的AD转换也是关键的步骤,特别是对于12bit的ECG放大器。在一些便携式应用中,功耗也是需要考虑的因素。


TI公司生产的MSP430F13X、MSP430F14X系列微功耗混和信号单片机,由于具有速度快(8MIPS/16bit),集成度高(Flash,RAM,16bit Timer,8通道12bit ADC以及UART等)、极低功耗等特点,因此非常适合于ECG放大器一类的应用。MSP430F14X系列单片机由于具有硬件乘法器,因此具备一定的 DSP功能,可以ECG信号进行滤波等预处理。


下图是三导联ECG放大器的框图:



ECG放大器通常由缓冲级、匹配电阻网络、放大、滤波、电平位移以及模数转换等几级构成。


电极采集到的心电信号首先进入缓冲级。缓冲级可以提高整个放大电路的输入阻抗,降低输出阻抗,这样就可以在后面的匹配电阻网络中得到幅值较高的信号。匹配电阻网络通常采用威尔逊电中心端网络,它通过特定的电阻网络获得威尔逊电中心端作为整个ECG系统的参考点。


放大级通常包括一级用AD620等仪表放大器构成的初级差分放大和TL084等通用运放构成的主放大级。由于体表液体与电极之间可能形成原电池,致使电极之间存在固定的电位差,因此第一级差分放大的增益不能太高,否则容易饱和。通常这一级增益选10左右。在第一级和第二级之间必须进行直流隔离。第二级采用同相放大电路,增益可以高达100倍,这样整个电路放大倍数可以达到1000倍。


由于信号中混有各种干扰噪声会影响ECG的有用信号,因此需要对这些噪声进行滤波。噪声来源主要有两类,一类是各种电子设备辐射出的高频噪声,一种是市电的50Hz噪声,通常情况下后者影响尤为明显。对这些噪声的滤波需要用到低通滤波器和50Hz带阻滤波器。ECG的低通滤波器通常情况下截至频率选择在 100Hz以下,少数情况下会用到更高的频率。低通滤波和放大可在同一级运放中实现。带阻滤波器对最终信号的质量尤为重要,由于带阻滤波器的特性参数对元器件的精度很敏感,因此在这一级的设计中需要用到精密的阻容原件,还常常需要多级级联来获得较好的效果。


上诉几级电路都是在零偏置条件下工作,因此输出信号幅值有正有负。而进入ADC的信号必须是单端的,因此需要用加法器将双端的信号位移使之成为单端信号。


经过放大、滤波、位移之后的信号输入MSP430F133的A0-A2端进行数模转换。转换采用MSP430的顺序转换模式,采样频率可以用时钟中断来进行控制。若需要100Hz的有用信号,则应选择采样率为200Hz。


下图是实际测量得到的心电图信号:



从上图可以看出,心电信号清晰稳定,完全可以满足临床监护以及病理分析的要求。


在上述电路中,想要获得清晰稳定的心电信号,滤波器的设计很关键,特别是50Hz的带阻滤波器尤其重要。带阻滤波器的电路比较复杂,特性受外围组容元件影响较大,因此采用模拟设计往往不太容易获得很好的特性。并且由于使用环境的差异,例如我国市电是50Hz而许多国家是60Hz,因此导致产品的通用性差。如果能够采用数字滤波器,不仅稳定性的问题可以迎刃而解,并且对于不同的使用环境只需要对软件进行修改就可以了,这可以降低硬件设计复杂程度和成本,还能够提高产品的通用性。


MSP430F14X系列单片机,内置了16bit乘法器,因此具备了一定的DSP功能,可以用来进行数字滤波等运算密集型的应用。我们利用MSP430F147设计了一种单导联的心电放大器,取得了很好的效果。


这种ECG放大器的前极放大电路跟前面所述的三导联放大器电路类似,都由缓冲器,电阻网络,差分放大以及主放大级等。两级放大均采用低通网络进行了低通滤波,截止频率选择在80Hz。不同的是,这个电路中省去了50Hz带阻滤波器,这使得电路中组容元件的数量减少了40%,并且获得了模拟滤波器所无法比拟的优良特性。

该电路中ADC采样频率为200Hz。采用四阶切比雪夫滤波器,通带选择在45-55Hz之间,可以得到传递函数为:


对应差分方程为:


上述传递函数的幅频和相频特性如下图所示:



由于MSP430F147只能进行定点运算,所以在处理上述查分方程时,必须将其变换为整数运算。将各部分系数均乘以4096,取整数部分,运算得到的结果再采用右位移12位的方法得到最终结果,运算代码如下:


y[k] = (3318*x[k] + 6636*x[k-2] + 3318*x[k-4]


6913*y[k-2] – 3049*y[k-4])>>12


其中的乘法运算要采用MSP430的硬件乘法器来实现才能保证运算速度。



在系统时钟为8MHz,采样频率为200Hz条件下,该数字滤波器所得到的结果如下:



图四 数字滤波器的性能



图四中下半部分是人为加入强烈的50Hz干扰后的心电图。上半部分是经过MSP430F147进行数字滤波后的心电图,可以看出,滤波的效果非常理想,完全可以达到临床实用的要求。图5是处理前和处理后的频谱,可以看出,信号在50Hz的地方被很好地抑止了。


唯一让人觉得美中不足的是,MSP430F147的处理能力只能够实时处理单导联的ECG信号,对于多导联的运算能力则显得不足。对于多导联应用,需要考虑采用DSP进行处理。


关键字:MSP430  ECG  放大器 引用地址:采用MSP430设计的12位心电(ECG)放大器

上一篇:血氧仪核心硬件电路设计及Multisim仿真
下一篇:MSP430硬件I2C使用方法——以BH1710和AT24C02为例

推荐阅读最新更新时间:2024-11-20 11:21

德州仪器推出新型MSP430微控制器
德州仪器(TI)近日发布了用于传感应用的超值超低功耗MSP430™微控制器(MCU)。现在,开发人员可通过MSP430超值传感系列MCU中的各种集成混合信号功能实现简单的传感解决方案。该系列新增产品还包括两款新型入门级器件和一款新型TI LaunchPad™开发套件,可帮助用户快速轻松地进行评估。 TI MSP430超值传感系列MCU的特点和优点 开发人员现在可以使用代码示例库灵活定制25个常用系统级功能,包括定时器、输入/输出扩展器、系统复位控制器、电可擦除可编程只读存储器(EEPROM)等。 通用核心架构、工具和软件生态系统以及包括迁移指南在内的广泛文档,使开发人员可以轻松地针对每个设计选择合适的MSP430超值传
[嵌入式]
学习MSP430G2553总结
个人感觉TI做的这块430就是一坨屎,内部时钟根本不稳,而且连datesheet都没有,但作为比赛指定的东西我们还是学了,这个连51都不如的16位单片机费了我四天时间把内部的模块给调了一遍,但是我调IIC时一直调不出来连时钟都没有,估计是做这块垃圾是连这个模块都没有吧,而且还写的那么复杂,连份像样的技术文档都没有,看的是别的技术文档,真是蛋疼无比,好了牢骚就发这么多,下面开始讲讲这块片子。 首先介绍下MSP430G2553的时钟,这块芯片的时钟源是四个,时钟线是4个;时钟源我们就不说了,一般都是默认的选择内部的DCO作为时钟源,然后通过一系列的嫁接到MCLK SMCLK上,至于为什么这块芯片上不用锁相环的问题我深表不解,这个解
[单片机]
基于MSP430和DS18B20的温室大棚温度监测系统模块电路
  1 温度采集传感器DS18B20   DS18B20是一种单总线数字测温芯片,使用方便、耐磨耐碰、抗干扰能力强,能够直接读取被测物体的温度,其测量范围为 -55~+125℃,且测量精度高,电压适用范围宽(3.0~5.5V),供电方式既可以采用外部供电,也可以采用寄生电源的方式从数据线上获取电能。它体积小,根据应用场合的不同可以有不同的封装形式,封装后的DS18B20可用于电缆沟测温、高炉水循环测温、锅炉测温、机房测温、农业大棚测温、弹药库测温等各种非极限温度场合。   DS18B20独特的单线接口方式使得它在与微处理器连接时仅需要一条线即可实现与微处理器的双向通讯。与此同时,DS18B20还支持多点组网功能,可以将多个DS
[单片机]
基于<font color='red'>MSP430</font>和DS18B20的温室大棚温度监测系统模块电路
MSP430单片机GPIO编程入门教程
在本教程中,我们将一起学习MSP430单片机GPIO的编程方法。本文也适用于Launchpad开发板上使用的MSP430x2xx器件,如MSP430G2553、MSP430G2231等。MSP430单片机上的大多数引脚被分组为最多8个端口, P1到P8。每个端口都是8位宽,并有8个相关的I / O引脚。这些引脚直接映射到相应的端口寄存器,因此可以独立操作I / O引脚。只有端口P1和P2中的引脚支持中断。 此外,每个I / O引脚还具有可配置的上拉和下拉电阻。 每个端口都有一组相关的寄存器,用来操作各个引脚。 位映射和端口分组如下所示: 注意:在编程指南/数据手册中使用的引脚的命令约定是’Px.y’,其中’x’对应的是端口号(
[单片机]
<font color='red'>MSP430</font>单片机GPIO编程入门教程
可自动关断的扬声器放大器,有效节省手机功耗
图1所示AutoShutdown电路介绍了电话通话时的瞬态特性,当电路检测到通话中断时,就会将扬声器放大器置于低功耗关断模式,以节省电池能量、延长通话时间; 当通话重新开始时,音频功放会立刻启动,以免丢失语音信息。 图1. 该电路在没有音频信号时,通过自动关断扬声器驱动器来节省电池功耗。 手机电池的主要消耗在射频功放和扬声器(AB类扬声器放大器),理想情况下,以1W功率驱动8Ω喇叭时消耗353mARMS的电流,在没有音频信号输入时,也会消耗毫安级的电流。基于这个原因,大部分扬声器驱动IC都有关断模式,在不使用驱动器时降低芯片的电流消耗。 电路的静态电流和关断模式下的
[电源管理]
可自动关断的扬声器<font color='red'>放大器</font>,有效节省手机功耗
iar 堆栈设置_IAR MSP430设置合理堆栈大小
最近在MSP430-169LCD(MSP430F169,RAM为2KB)调试一些ucos演示例子,IAR for MSP430默认的堆栈大小是80字节,编译可以通过,运行结果不确定性,调试过程会提示 the stack pointer for stack is outside the stack range ,堆栈溢出。那么,到底设置多大的堆栈够用且不浪费呢。 一、合理设置堆栈大小 首先,查看程序共需要多大的堆栈,生成map文件,方法如下: 图1 生成map文件 生成的map文件在项目目录下的/Debug/List,打开map文件在CALL GRAPH找到找到栈的最大使用量(我的理解是main主函数,用栈最多,所以直
[单片机]
iar 堆栈设置_IAR <font color='red'>MSP430</font>设置合理堆栈大小
全新的PowerWise麦克风阵列放大器
美国国家半导体公司宣布推出一款采用远场噪声抑制技术的全新音频产品 ----PowerWise LMV1088 。远场噪声抑制技术可以减少输出频率失真及其他音频假信号,令传送的声音更自然、更真实。以音效来说,一般基于数字信号处理器或微处理器搭配软件的音频系统,采用子频带频率处理算法抑制噪声,其抑制效果大大逊色于远场噪声抑制技术。 PowerWise LMV1088 双输入麦克风阵列放大器采用美国国家半导体的远场噪声抑制技术,可以降低背景噪声,令传送的语音更清晰,特别适用于移动电话、双向式无线电对讲机及有源耳机。这款放大器来自美国国家半导体 PowerWise® 高能效芯片系列,功耗极低 ( 只
[模拟电子]
功率放大器两种实现方法的比较
功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题必须重视。功率放大器可以由分立元件组成,也可由集成电路实现。 1分立元件组成功率放大器 图1为一个由分
[应用]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved