煤矿数字通信系统设计

发布者:MysticalGarden最新更新时间:2021-07-08 来源: 2关键字:煤矿  数字通信系统  stm32 手机看文章 扫描二维码
随时随地手机看文章

摘要针对煤矿井下安全,提供了一种数字语音通信解决方案。该方案采用MBE压缩技术实现语音数据的压缩,并使用了STM32F107作为主控芯片,用主控芯片自带的CAN总线控制器实现远距离实时语音传输。文中介绍了该系统的软硬件设计,经测试,该系统在实际环境中具有良好的稳定性和实时性。


中国作为产煤大国,煤矿安全一直都是重中之重。如何保证井下和井上之间可靠的实时语音通信,越来越受到关注和重视。目前煤矿通信系统主要分为两种:一种是调度电话,包括有线和无线电话;另一种是井下局部扩音电话系统。对于数字通信方式,目前许多公司仍采用模拟信号来实现煤矿语音系统,与数字语音通信系统相比,其存在不稳定、不灵活等缺点,而现阶段模拟通信系统已逐渐被代替。目前,现场总线已发展成为集计算机网络、现场控制、生产管理等内容为一体的现场总线控制系统。由于现场总线分布在自动化应用的各个角落,给设计者和使用者提供了方便,但这些应用均被限制于数据传输。本设计基于CAN总线构建井下对讲系统,与其他通信方式相比,其具有较好的实时性、可靠性和灵活性。


1 系统总体设计


系统结构框图如图1所示,一语音节点经过麦克风采集声音信号,以8 kHz采样进行A/D量化成16位数据,然后经语音压缩芯片进行数据压缩,并传输给STM32处理器,处理器经CAN收发器传输至井下语音CAN总线上。其他语音节点通过CAN收发器接收井下语音CAN总线上的压缩数据,经语音解码芯片进行解码后通过D/A转换,再由扩音器播出。

煤矿数字通信系统设计

1.1 硬件设计


本系统应用于井下皮带保护系统,具有采集井下皮带工作状态信息和控制井下皮带运作,同时还具有语音通信系统。处理器作为系统核心,需对语音信息、皮带工作信息及其通信协议进行处理、整合、储存、调度,因此处理器的选择是关键。系统采用ST公司的互联性系列控制器STM32F107作为模块处理器,此芯片具有较强的工业性能,系统时钟最高可达72 MHz,标准外设有10个定时器、两个12位1-Msample/s AD、两个12位D/A、两个I2C接口、5个USART接口和3个SPI端口以及高质量数字音频接口IIS。另外STM32F107拥有全速USB(OTG)接口,两路CAN2.0B接口,以及以太网10/100 MAC模块,以此满足皮带保护系统。系统使用其中一路用来实现语音通信;另一路用来实现现场管理及现场控制。处理器部分电路如图2所示。主控芯片除了必须的复位、晶振、电源等电路外,还包括了与CAN总线收发增强器以及与AMBE-1000语音编码芯片的连接。主控芯片STM32F107与AMBE-1000之间采用SPI同步出口连接,而AlMBE-1000与CSP-1027S之间采用了专用的同步接口连接,该种接口无需增加额外的单片机驱动便可进行通信。最后将CSP-1027S与麦克风、扬声器之间进行连接。

煤矿数字通信系统设计

CAN总线传输距离是以牺牲带宽为代价,因此需在保证良好语音质量的条件下,采用较低语音比特率传输,表1为CAN总线传输距离与波特率关系。

煤矿数字通信系统设计

为保证高保真、低带宽语音通信,系统采用MBE技术进行语音压缩。数字语音压缩目前在多媒体信息技术和网络技术中应用广泛,而压缩技术也较为成熟。由于采用DSP进行数字语音压缩,算法复杂且价格昂贵,故本系统采用单片集成芯片AMBE-1000进行语音压缩。AMBE-1000是一款高性能多速率语音编解码芯片,采用MBE技术的语音压缩算法,具有语音音质好和编码速率低等优点,语音编解码速率可在2.4~9.6 kbit·s-1之间以50 kbit·s-1的间隔变化,即使在2.4 kbit·s-1时,仍可保持自然的语音质量和可懂度。所有编码和解码操作均在芯片内部完成,无需额外的存储器。这些特性使其适用于本系统设计。系统中CAN波特率设为18 kbit·s-1,传输距离≥2 km。


AMBE-1000集成编码器和解码器,两者相互独立。编码器接收8 kHz采样的语音数据流并以一定的速率输出信道数据。相反,解码器接收信道数据并合成语音数据流。编码器和解码器接口的时序是完全异步的,其工作信道结构如图3所示。语音信息经过发送方的AMBE-1000编码器被压缩为数字语言编码,经CAN总线传入接收方的AMBE-1000解码器,再经由解码器得到发送方的语音信息。同样,原接收方也可由相同的方式将自身的语言信息传递至原发送方。

煤矿数字通信系统设计

AMBE-1000采用A/D-D/A芯片作为语音信号的接口。为满足要求与性能,系统选用A/D-D/A芯片CSP1027S与AMBE-1000作为接口连接。芯片集成16位串行A/D和D/A,由低功耗的CMOS技术和低电压数字系统设计而成,其模拟接口处内置了前置放大器,因此可以输入较小的语音信号。符合G.712语音频带响应和信噪比规范,最高采样率可达24 kHz,满足AMBE-1000编码要求。其与AMBE接口电路如图4所示。

煤矿数字通信系统设计

为提高处理器CAN总线的驱动能力,需在处理器与现场总线间增加CAN收发器。系统选用周立功的CTM8251,该芯片内部集成了CAN所必需的隔离及收发器件。该芯片的主要功能是将CAN控制器的逻辑电平转换为CAN总线所必需的差分电平,并具有DC-DC隔离功能,其接口电路如图5所示。

煤矿数字通信系统设计

1.2 软件设计


系统软件在Keil4开发环境完成设计,同时该开发环境与Jlink-v8配合可实现在线调试功能,为本系统的完成提供了方便。


软件基于模块化设计,不同模块完成相应功能。首先,开机进入设备初始化功能,其中包括系统时钟配置、管脚配置、CAN控制器配置、AMBE-1000初始化等。系统时钟配置为72 MHz,这是主控芯片STM32F107所能达到的最高工作频率,在该频率下拥有足够高的效率来处理各外设信息。对管脚的配置包括对按键和部分外设I/O口的配置,对CAN总线控制器的配置主要为传输速度配置。因井下一般两节点距离<3 km,且语音经过压缩后为8 kbit·s-1,所以将CAN总线传输速率配置为9 kbit·s-1,这便满足了3 km的传输要求。AMBE-1000的初始化主要为通信接口的初始化,其通信接口为SPI同步串口,可直接与主控芯片的SPI接口连接。


系统启动后进入正常工作模式,当有语音按钮按下时,处理器进入语音采集模式,并通过SPI使能AMBE-1000,AMBE-1000将话音数据每20 ms压缩为一个语音数据包,再经由STM32主控芯片将压缩包上传至CAN总线。CAN总线接收端配置成中断模式,当有语音数据接收时,触发中断并将该数据压缩包经过SPI同步串口传入AMBE-1000,并控制其进行解压缩并播放。在解码器部分,当其检测到丢失一帧语音数据时,能依据上一帧数据尽量真实地预测下一帧语音数据,同时给出适当的语音信号。系统流程如图6所示,中断程序流程如图7所示。

煤矿数字通信系统设计

1.3 实验结果


系统在实验室的测试方法如图8所示。

煤矿数字通信系统设计

测试系统由两个语音节点组成,两节点之间由20 m线长相连接,并在一号节点放置信号发生器,二号节点放置示波器与分贝计。因人声频率范围为300~3 400 Hz之间,所以信号发生器分别取在该范围内的5个点作为测试点,测试结果如表2所示。

煤矿数字通信系统设计

对应这5个频率点由信号发生器发出响应频率的正弦波,再由分贝计从节点2的扬声器声响中测得分贝值,而失真度可通过示波器观察出正弦波的失真情况。测试结果说明,扬声器声响≥80 dB,失真度≤12%,基本满足人声的辨识度。


通过实际测试证明了将语音信号进行压缩并通过CAN总线进行传输工作良好,实现了低速率数字远程传播。同时本系统具有较好的灵活性,可实现广播、组播、点对点等多种通信方式,并具有较好的实时性和抗干扰性。


2 结束语


文中介绍了一种应用于煤矿的井下语音传输系统,该系统基于MBE语音压缩技术,且以CAN总线为传输方式。本系统应用于井下皮带保护系统中的语音扩音系统内,主要用以实现井上与井下,以及井下各部分进行的相互实时语音通信,为确保煤矿安全提供保障。文中设计成本较低,便于维护和修改,且实用性较强。


关键字:煤矿  数字通信系统  stm32 引用地址:煤矿数字通信系统设计

上一篇:STM32-串口超时判断方式接收未知长度数据
下一篇:STM32中如何使用printf()函数?

推荐阅读最新更新时间:2024-11-11 15:22

可携带,低成本的基于STM32的心率监测仪方案
心率是反映身体健康状态的一项重要指标,设计一款便于携带、成本低的心率检测装置能够为我们生活质量的提高凭添一份保障。本文介绍一款心率检测仪以L432KC为处理核心,并凭借L432KC开发板的小巧身姿为mini化便携式设计提供了有力的支持。此外,合理的成本控制也使其具有较好的市场潜力。下面就随医疗电子小编一起来了解一下相关内容吧。 该设计采用一款光电反射式心率传感器,所输出的信号为模拟量,经L432KC进行A/D转换,成为可供分析的数字信号,通过分析计算可获得心率值和相邻心拍时间,并由双色OLED屏显示出来。此外,在外挂RS232串行通讯模块的条件下,可将脉搏信号上传到电脑,并由专用软件绘制出脉搏波形和心率曲线,以便进行精确地分析和判
[医疗电子]
PWM控制电机速度的基本原理
做STM32智能小车的实验中会用到定时器PWM输出,来改变直流电机的转速。分享本文了解如何通过PWM实现对电机速度的控制。 PWM控制电机速度的基本原理 PWM(Pulse Width Modulation),也就是脉冲宽度调制。 PWM中有一个比较重要的概念,占空比:是一个脉冲周期内有效电平在整个周期所占的比例。 为了实现IO口上电压的持续性变化,可以调节PWM的占空比。这也能够使外设的功率进行持续性变化,最终控制直流电机转速的快慢。如何调节PWM波形的输出就是重点。相关推荐:STM32中PWM的配置与应用详解。 上图中的ARR是我们给定时器的一个预装载值,CCRx的上下变化是产生P
[单片机]
PWM控制电机速度的基本原理
STM32开启ADC转换
ADON,第一次设置的时候,可以唤醒ADC。 第二次设置ADON,即可执行ADC转换。 所以 对于开启ADC转换,有两种方法:1,可以通过设置ADON开启;2,通过其他触发条件。
[单片机]
<font color='red'>STM32</font>开启ADC转换
STM32 内存分布探究
本人在运行ucos时遇到一个非常奇怪的问题,运行一段时间后就会莫名进入hardfault函数,导致系统死机。后来根据对堆栈调试,发现每次调用的函数都不一样,甚是费解。通过map文件最后得出结论,原来在系统初始化的时候在flash里面读出了系统配置参数,在系统运行过程中会写flash,而flash定义的地址与程序代码存储的位置发生了重叠,一写数据就擦掉了一些函数,当调用到这些函数的时候就会发生未知指令的错误。把这个参数存储地址定义的分开些就会解决这个问题。可是,开始这个地址写好了,随着程序代码不断增多,消耗的片上flash也会增大,是个动态增长的过程,不注意很有可能发生冲突。所以在项目开发过程中定期检查定义的参数存储地址,或者干脆把
[单片机]
STM32通过DMA采集多通道AD
环境: 主机:XP 开发环境:MDK4.23 MCU:STM32F103CBT6 说明: 通过脚PA1,PA2采集AD。每路AD采集10次。 源代码: #include ad_driver.h //全局变量 //AD采样存放空间 __IO uint16_t ADCConvertedValue ; //函数 //初始化AD void init_ad(void) { ADC_InitTypeDef ADC_InitStructure; DMA_InitTypeDef DMA_InitStructure; GPIO_InitTypeDef GPIO_Ini
[单片机]
STM32的ADC输入通道配置
STM32中最多有3个ADC模块,每个模块对应的通道不完全重叠。 下图是STM32F103CDE数据手册中的总框图的左下角,图中可以看出有8个外部ADC管脚分别接到了3个ADC模块,有8个外部ADC管脚只分别接到了2个ADC模块,还有5个外部ADC管脚只接到了ADC3模块,这样总共是21个通道。 下表是这些ADC管脚与每个ADC模块的对应关系,表中可以看出ADC1还有2个内部通道,分别接到内部的温度传感器和内部的参照电压:
[单片机]
<font color='red'>STM32</font>的ADC输入通道配置
剖析STM32-定时器1
前言 定时器作为微控制器不可缺少的外设,在STM32中也是如此。相信不少初学者学到定时器的时候对STM32的学习热情就大打折扣甚至想要放弃了,因为这一部分知识确实比较复杂。但是,如果你在之前对GPIO、串口通信、外部中断的学习中把这些外设掌握了的话,学习这个新知识并不难。 例本章共计1万余字,从STM32定时器的原理、寄存器介绍、定时器配置以及定时器的几个常用的功能(如定时器中断、定时器输出比较PWM波形、定时器输入捕获测电平长度、定时器编码器模式应用等)的使用方法来教大家掌握定时器这一外设。 一、定时器基本介绍 1. STM32定时器 1、上来说就是用来定时的机器,是存在于STM32单片机中的一个外设。STM32总共有8
[单片机]
剖析STM32-定时器1
STM32 同一I/O口下 多个口同时操作
规则: 一、置GPIOD- BSRR低16位的某位为'1',则对应的I/O端口置'1';而置GPIOD- BSRR低16位的某位为'0',则对应的I/O端口不变。 二、置GPIOD- BSRR高16位的某位为'1',则对应的I/O端口置'0';而置GPIOD- BSRR高16位的某位为'0',则对应的I/O端口不变。 三、置GPIOD- BRR低16位的某位为'1',则对应的I/O端口置'0';而置GPIOD- BRR低16位的某位为'0',则对应的I/O端口不变。 例如: 1)要设
[单片机]
<font color='red'>STM32</font> 同一I/O口下 多个口同时操作
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved