STM32F103ZET6 启动模式

发布者:心灵舞动最新更新时间:2021-11-04 来源: eefocus关键字:STM32F103ZET6  启动模式  存储介质 手机看文章 扫描二维码
随时随地手机看文章

STM32三种启动模式:

STM32三种启动模式对应的存储介质均是芯片内置的,它们是:

1)用户闪存 = 芯片内置的Flash。
2)SRAM = 芯片内置的RAM区,就是内存啦。
3)系统存储器 = 芯片内部一块特定的区域,芯片出厂时在这个区域预置了一段Bootloader,就是通常说的ISP程序。这个区域的内容在芯片出厂后没有人能够修改或擦除,即它是一个ROM区。


在每个STM32的芯片上都有两个管脚BOOT0和BOOT1,这两个管脚在芯片复位时的电平状态决定了芯片复位后从哪个区域开始执行程序,见下表:


BOOT1=x  BOOT0=0  从用户闪存启动,这是正常的工作模式。
BOOT1=0  BOOT0=1  从系统存储器启动,这种模式启动的程序功能由厂家设置。
BOOT1=1  BOOT0=1  从内置SRAM启动,这种模式可以用于调试。

----------------------------------------------------------------------------------------------------------------------------- 

现有的参考设计都是在STM32的启动选择引脚BOOT0和BOOT1上使用了跳帽,用以人工选择STM32的启动方式,但是在实际应用中这种设计就显得冗余,所以这里顺带研究了一下STM32的启动方式。


所谓启动,一般来说就是指我们下好程序后,重启芯片时,SYSCLK的第4个上升沿,BOOT引脚的值将被锁存。用户可以通过设置BOOT1和BOOT0引脚的状态,来选择在复位后的启动模式。

 
1. Main Flash memory

是STM32内置的Flash,一般我们使用JTAG或者SWD模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序。

 
2.  System memory

从系统存储器启动,这种模式启动的程序功能是由厂家设置的。一般来说,这种启动方式用的比较少。


系统存储器是芯片内部一块特定的区域,STM32在出厂时,由ST在这个区域内部预置了一段BootLoader,也就是我们常说的ISP程序,这是一块ROM,出厂后无法修改。


一般来说,我们选用这种启动模式时,是为了从串口下载程序,因为在厂家提供的BootLoader中,提供了串口下载程序的固件,可以通过这个BootLoader将程序下载到系统的Flash中。但是这个下载方式需要以下步骤:

Step1:将BOOT0设置为1,BOOT1设置为0,然后按下复位键,这样才能从系统存储器启动BootLoader

Step2:最后在BootLoader的帮助下,通过串口下载程序到Flash中

Step3:程序下载完成后,又有需要将BOOT0设置为GND,手动复位,这样,STM32才可以从Flash中启动


可以看到,利用串口下载程序还是比较的麻烦,需要跳帽跳来跳去的,非常的不注重用户体验。


3. Embedded Memory

内置SRAM,既然是SRAM,自然也就没有程序存储的能力了,这个模式一般用于程序调试。


假如我只修改了代码中一个小小的地方,然后就需要重新擦除整个Flash,比较的费时,可以考虑从这个模式启动代码(也就是STM32的内存中),用于快速的程序调试,等程序调试完成后,在将程序下载到SRAM中。

关键字:STM32F103ZET6  启动模式  存储介质 引用地址:STM32F103ZET6 启动模式

上一篇:STM32F103ZET6 时钟(2)—— 代码篇
下一篇:STM32F103ZET6 — USART

推荐阅读最新更新时间:2024-11-01 20:32

STM32三种启动模式
STM32三种启动模式对应的存储介质均是芯片内置的,它们是: 1)用户闪存 = 芯片内置的Flash。 2)SRAM = 芯片内置的RAM区,就是内存啦。 3)系统存储器 = 芯片内部一块特定的区域,芯片出厂时在这个区域预置了一段Bootloader,就是通常说的ISP程序。这个区域的内容在芯片出厂后没有人能够修改或擦除,即它是一个ROM区。 在每个STM32的芯片上都有两个管脚BOOT0和BOOT1,这两个管脚在芯片复位时的电平状态决定了芯片复位后从哪个区域开始执行程序,见下表: BOOT1=x BOOT0=0 从用户闪存启动,这是正常的工作模式。 BOOT1=0 BOOT0=1 从系统存储器启动,这种模式启动的程序功能由厂
[单片机]
STM32启动模式详解
一、三种boot启动模式: 一般来说就是指我们下好程序后,重启芯片时,SYSCLK的第4个上升沿,BOOT引脚的值将被锁存。用户可以通过设置BOOT1和BOOT0引脚的状态,来选择在复位后的启动模式。 1、第一种方式(boot0 = 0):Flash memory启动方式。启动地址:0x08000000 (stm32F207系列) 是STM32内置的Flash,一般我们使用JTAG或者SWD模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序。 基本上都是采用这种模式。 2、第二种方式(boot0 = 1;boot1 = 0:System memory启动方式。启动地址:0x1FFF0000 (
[单片机]
STM32<font color='red'>启动</font><font color='red'>模式</font>详解
基于stm32f103zet6点亮LED之启动文件
终于开始点亮第一个LED了,惯用思维,从模仿开始!前两天一直在做最小系统板,今天上午才调试出来,测试程序也是的别人的,从现在开始就来仔细分析一下这第一个点灯大法吧! 由于在开始学习stm32之前已经接触过相关的指导书了,所以现在学起来还是比较轻松的,废话不多说,直接从启动文件开始吧! 启动文件这部分和arm11的还是很类似的,是开发板上电后执行的第一段代码,唯一不同的感觉的就是比arm11的启动文件简单多了,下面的一些代码解释都是和arm11对照来说的,上代码吧,声明,我使用的是3.5的库!芯片的具体型号是stm32f103zet6!这里我不适用keil自带的启动代码,为什么,百度能搜到原因! 首先明白一点自己所用的板子的简单介绍
[单片机]
基于<font color='red'>stm32f103zet6</font>点亮LED之<font color='red'>启动</font>文件
STM32启动模式及API
我们玩ARM9,一般都是在内存里调试程序,速度飞快。STM32下也可以这样,虽说现在的flash寿命已经很长了,但flash中调试烧录程序还是一个很慢的过程,有时候程序上一个小小的改动要花上几倍的时间下载代码,这确实是不能忍受的。   我们也可以在开发STM32时,在内存中调试程序。   { STM32这颗Cortex-M3控制器,与其他许多ARM一样,提供了BOOT0和BOOT1两个管脚用于启动选择。 BOOT1=x BOOT0=0 从用户闪存启动,这是正常的工作模式。 BOOT1=0 BOOT0=1 从系统存储器启动,这种模式启动的程序功能由厂家设置。(用于串口ISP) BOOT1=1 BOOT0=1 从内置SRAM启动,这种模
[单片机]
STM32<font color='red'>启动</font><font color='red'>模式</font>及API
KEIL 5下载程序到STM32F103ZET6芯片时的相关设置
1、点击箭头所指的魔术棒打开项目设置,(也可在Project下打开该魔术棒) 2、Device选项卡下选择项目所使用的芯片,右侧是与所选芯片的相关信息(我用的是STM32F103ZET6选择STM32F103ZE即可) 3、Target选项卡下晶振与软件仿真有关,我们是下载到硬件然后调试可以不用设置,下面有ROM和RAM的起始地址和大小,指的都是实际硬件的ROM和RAM的起始地址和大小,默认即可 4、Output选项卡如下,打开Debug调试信息和阅读代码时函数跳转 5、Listing选项卡下将红框中的全部选上,目的是在最后程序链接时记录详细信息(在project.map文件中),英语不太好
[单片机]
STM32F103ZET6 时钟(2)—— 代码篇
基于特定的开发板上的时钟策略: 倍频/分频系数需要在使能 PLL 之前进行配置,所以需要在 Open PLL 之前将所有系统的时钟分频器系数以及PLL的倍频系数配置好。整个时钟的配置流程如下所示: (1) 开启HSE,等待HSE稳定 (2) 设置APB2、APB1、AHB分频系数 (3) 设置PLL的时钟来源和PLL的倍频系数 (4) 开启PLL,等待PLL稳定 (5) 设置SYSCLK源为 PLL 的输出,读取时钟切换状态,确保PLLCLK被选为系统时钟 (1) OSC_IN/OSC_OUT 上外接 8M 晶振。要使用外接晶振,上电后(默认使用 8M 的HSI),首先需要使能 HSE,位于RCC_CR寄存器
[单片机]
<font color='red'>STM32F103ZET6</font> 时钟(2)—— 代码篇
Arm2440——Nand flash启动模式详解(LED程序为例)
断断续续的研究arm也有2个月了,现在才感觉理解了arm在Nand flash模式下的启动过程,现在来这里记录下来以表达我无比喜悦的心情。闲话少说,趁着还没有忘记学习过程中的感受,直接进入正题。 大家都知道,arm在Nand flash启动模式下启动时系统会将Nand flash中的前4KB代码拷贝到SRAM(也就是Steppingstone中),由SRAM配置中断向量表和完成Nand flash访问的必要初始化,然后将Nand flash中的全部程序代码拷贝到SDRAM中,最后由SRAM跳转到SDRAM,然后程序就正常执行了,这一过程看上去很简单,但是真正理解这一过程还是不简单的,尽管这样,还是想告诉大家仔细理解还是比较容易理解这
[单片机]
STM32开发 -- 烧写/启动模式
根据我一贯的作风,接下来该讲烧写/启动模式,然后再讲各种烧写方法和过程,最后是启动流程。 这一篇文章,就看一下 烧写/启动模式。 一、启动模式(Boot modes) 阅读:STM32中文参考手册_V10.pdf 查看启动配置(Boot modes)。 在STM32F10xxx里,可以通过BOOT 引脚选择三种不同启动模式。 在系统复位后, SYSCLK的第4个上升沿, BOOT引脚的值将被锁存。用户可以通过设置BOOT1和BOOT0引脚的状态,来选择在复位后的启动模式。 在从待机模式退出时, BOOT引脚的值将被被重新锁存;因此,在待机模式下BOOT引脚应保持为需要的启动配置。在启动延迟之后, CPU从地址0x000
[单片机]
STM32开发 -- 烧写/<font color='red'>启动</font><font color='red'>模式</font>
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved