Keil C51,内存与指针 反汇编比较

发布者:花海鱼最新更新时间:2022-05-31 来源: eefocus关键字:Keil  C51  内存  指针  反汇编 手机看文章 扫描二维码
随时随地手机看文章

dATa: 固定指前面0x00-0x7f的128个RAM,可以用acc直接读写的,速度最快,生成的代码也最小。
idATa:固定指前面0x00-0xff的256个RAM,其中前128和dATa的128完全相同,只是因为访问的方式不同。
idATa是用类似C中的指针方式访问的。
汇编中的语句为:mox ACC,@Rx.(不重要的补充:c中idATa做指针式的访问效果很好)

xdATa: 外部扩展RAM,一般指外部0x0000-0xffff空间,用DPTR访问。

pdATa: 外部扩展RAM的低256个字节,地址出现在A0-A7的上时读写,用movx ACC,@Rx读写。这个比较特殊,而且C51好象有对此BUG, 建议少用。但也有他的优点,具体用法属于中级问题,这里不提。

startup.a51的作用,和汇编一样,在C中定义的那些变量和数组的初始化就在startup.a51中进行,如果你在定义全局变量时带有数值,如unsigned char dATa xxx="100";,那startup.a51中就会有相关的赋值。如果没有=100,startup.a51就会把他清0。(startup.a51==变量的初始化)。 这些初始化完毕后,还会设置SP指针。对非变量区域,如堆栈区,将不会有赋值或清零动作。

有人喜欢改startup.a51,为了满足自己一些想当然的爱好,这是不必要的,有可能错误的。比如掉电保护的时候想保存一些变量, 但改startup.a51来实现是很笨的方法,实际只要利用非变量区域的特性,定义一个指针变量指向堆栈低部:0xff处就可实现。, 为什么还要去改? 可以这么说:任何时候都可以不需要改startup.a51,如果你明白它的特性。

bit
是在内部数据存储空间中 20H .. 2FH 区域中一个位的地址,这在DATA的20H以后以字节形式出现,可互相参照。另外加上8051 可寻址 的SFR,但刚刚试过,只是00H--7FH起作用,也就是说当数据有变化时颜色变红,以后的从80H到--FFH就不是位寻址区了,是位寻址的特殊寄存器,如涉及到了可位寻址的那11个当然会有反应。

复位后,程序计数器PC的内容为0000H,内部RAM各单元的值不确定。
各功能寄存器的复位值如下:
堆栈指针SP的复位值为07H,累加器ACC、寄存器B的复位值为00H,数据指针DPTR的复位值为0000H,而p0、p1、p2、p3四个口的复位值为0FFH。其他SFR如PSW、TCON、TMOD、TL0、TH0、TL1、TH1的复位值也为00H。

wave中是低128字节和高128字节(0-7FH),低128字节是片内RAM区,高128字节(80-FFH)是SFR(特殊功能寄存器)bit则是位于低128字节的20H .. 2FH 区域,即data的20H .. 2FH 区域

code 是在 0000H .. 0FFFFH 之间的一个代码地址。

我用
ORG 5000H
TAB: DB 22H,3BH,43H,66H,5H,6DH,88H后,
CODE从5000H开始以后变成DB各位

data
是在 0 到 127 之间的一个数据存储器地址,或者加 128 .. 255 范围内的一个特殊功能寄存器(SFR)地址。两者访问的方式不同。实际上由于PSW的复位设置PSW.3=RS0和PSW.4=RS1皆为0,所以通用工作寄存器区就是第0区,所以data的00--07H部分是与REG栏中的R0--R7对应的。以后的则仅代表低128字节的内部RAM。
idata
是 0 to 255 范围内的一个 idata 存储器地址
idata与data重合低128字节,有的地方只有DATA表示256字节的片内RAM,
xdata 是 0- 65535 范围内的一个 xdata 存储器地址。

指针类型和存储区的关系详解
一、存储类型与存储区关系
data --->   可寻址片内ram
bdata --->   可位寻址的片内ram
idata --->  可寻址片内ram,允许访问全部内部ram
pdata ---> 分页寻址片外ram (MOVX @R0) (256 BYTE/页)
xdata ---> 可寻址片外ram (64k 地址范围FFFFH)
code ---> 程序存储区 (64k 地址范围),对应MOVC @DPTR

二、指针类型和存储区的关系

对变量进行声明时可以指定变量的存储类型如:
uchar data x和data uchar x相等价都是在内ram区分配一个字节的变量。

同样对于指针变量的声明,因涉及到指针变量本身的存储位置和指针所指向的存储区位置不同而进行相应的存储区类型关键字的
使用如:

uchar xdata * data pstr

是指在内ram区分配一个指针变量("*"号后的data关键字的作用),而且这个指针本身指向xdata区("*"前xdata关键字的作用),
可能初学C51时有点不好懂也不好记。没关系,我们马上就可以看到对应“*”前后不同的关键字的使用在编译时出现什么情况。

......
uchar xdata tmp[10]; //在外ram区开辟10个字节的内存空间,地址是外ram的0x0000-0x0009
......

第1种情况:

uchar data * data pstr;
pstr="tmp";

首先要提醒大家这样的代码是有bug的, 他不能通过这种方式正确的访问到tmp空间。 为什么?我们把编译后看到下面的汇编
代码:

MOV 0x08,#tmp(0x00) ;0x08是指针pstr的存储地址

看到了吗!本来访问外ram需要2 byte来寻址64k空间,但因为使用data关键字(在"*"号前的那个),所以按KeilC编译环境来说
就把他编译成指向内ram的指针变量了,这也是初学C51的朋友们不理解各个存储类型的关键字定义而造成的bug。特别是当工程中的
默认的存储区类为large时,又把tmp[10] 声明为uchar tmp[10] 时,这样的bug是很隐秘的不容易被发现。

第2种情况:

uchar xdata * data pstr;
pstr = tmp;

这种情况是没问题的,这样的使用方法是指在内ram分配一个指针变量("*"号后的data关键字的作用),而且这个指针本身指向
xdata区("*"前xdata关键字的作用)。编译后的汇编代码如下。

MOV 0x08,#tmp(0x00) ;0x08和0x09是在内ram区分配的pstr指针变量地址空间
MOV 0x09,#tmp(0x00)

这种情况应该是在这里所有介绍各种情况中效率最高的访问外ram的方法了,请大家记住他。

第3种情况:

uchar xdata * xdata pstr;
pstr="tmp";

这中情况也是对的,但效率不如第2种情况。编译后的汇编代码如下。

MOV DPTR, #0x000A ;0x000A,0x000B是在外ram区分配的pstr指针变量地址空间
MOV A, #tmp(0x00)
MOV @DPTR, A
INC DPTR
MOV A, #tmp(0x00)
MOVX @DPTR, A

这种方式一般用在内ram资源相对紧张而且对效率要求不高的项目中。

第4种情况:

uchar data * xdata pstr;
pstr="tmp";

如果详细看了第1种情况的读者发现这种写法和第1种很相似,是的,同第1 种情况一样这样也是有bug的,但是这次是把pstr分
配到了外ram区了。编译后的汇编代码如下。

MOV DPTR, #0x000A ;0x000A是在外ram区分配的pstr指针变量的地址空间
MOV A, #tmp(0x00)
MOVX @DPTR, A

第5种情况:

uchar * data pstr;
pstr="tmp";

大家注意到"*"前的关键字声明没有了,是的这样会发生什么事呢?下面这么写呢!对了用齐豫的一首老歌名来说就是 “请跟我
来”,请跟我来看看编译后的汇编代码,有人问这不是在讲C51吗? 为什么还要给我们看汇编代码。C51要想用好就要尽可能提升C51
编译后的效率,看看编译后的汇编会帮助大家尽快成为生产高效C51代码的高手的。还是看代码吧!

MOV 0x08, #0X01 ;0x08-0x0A是在内ram区分配的pstr指针变量的地址空间
MOV 0x09, #tmp(0x00)
MOV 0x0A, #tmp(0x00)

注意:这是新介绍给大家的,大家会疑问为什么在前面的几种情况的pstr指针变量都用2 byte空间而到这里就用3 byte空间了
呢?这是KeilC的一个系统内部处理,在KeilC中一个指针变量最多占用 3 byte空间,对于没有声明指针指向存储空间类型的指针,
系统编译代码时都强制加载一个字节的指针类型分辩值。具体的对应关系可以参考KeilC的help中C51 User's Guide。

第6种情况:

uchar * pstr;
pstr="tmp";

这是最直接最简单的指针变量声明,但他的效率也最低。还是那句话,大家一起说好吗!编译后的汇编代码如下。

MOV DPTR, #0x000A ;0x000A-0x000C是在外ram区分配的pstr指针变量地址空间
MOV A, #0x01
MOV @DPTR, A
INC DPTR
MOV DPTR, #0x000A
MOV A, #tmp(0x00)
MOV @DPTR, A
INC DPTR
MOV A, #tmp(0x00)
MOVX @DPTR, A

这种情况很类似第5种和第3种情况的组合,既把pstr分配在外ram空间了又增加了指针类型的分辨值。

关键字:Keil  C51  内存  指针  反汇编 引用地址:Keil C51,内存与指针 反汇编比较

上一篇:单片机(AT89C51)的仿真实验——流水灯和逐一闪烁灯(输入与输出)
下一篇:MCS-51单片机指令系统“读-改-写”方式指令

推荐阅读最新更新时间:2024-11-06 11:09

STM32的内存管理和堆栈相关的认知
今天仔细读了一下内存管理的代码,然后还有看了堆栈的相关知识,把以前不太明白的一些东西想通了,写下来,方便以后查看,也想大家看了能指出哪里不对,然后修改。 首先,先看一下stm32的存储器结构。 Flash,SRAM寄存器和输入输出端口被组织在同一个4GB的线性地址空间内。可访问的存储器空间被分成8个主要块,每个块为512MB。 FLASH存储下载的程序。 SRAM是存储运行程序中的数据。 所以,只要你不外扩存储器,写完的程序中的所有东西也就会出现在这两个存储器中。 这是一个前提! 堆栈的认知 1. STM32中的堆栈。 这个我产生过混淆,导致了很多逻辑上的混乱。首先要说明的是单片机
[单片机]
STM32的<font color='red'>内存</font>管理和堆栈相关的认知
Mini2440在Keil MDK下的裸机程序运行环境搭建
1)建立一个工程,选择芯片型号(S3C2440A),加入启动代码 2)打开S3C2440.S这个文件,点击configuration wizard,将里面的选项全部选中。 3)现在配置项中(alt+F7)做如下修改: 4)在output中勾选creat HEX file,在utilities中选择J-LINK/J-TRACE,点击setting做如下设置: S29GL016是我的开发板用的nor flash型号,至此,一个能用的环境就搭建好了。 不过上面的是把程序下载到NorFlash中去的,当需要上系统的时候,NorFlash里面是要放bootloader的,那个时候如果想要跑裸机程序,就得下载到SD
[单片机]
Keil4中建立基于V3.4.0固件库的STM32工程
几个月前刚接触STM32时,第一感觉就是固件库里的文件又多又深,还好发现固件库里自带有范例文件,但是它们全都是针对特定的评估板的,手头只有一块STM MCU 3 in 1 MiniKit。虽说作些修改就可为我所用,可对于像我这样还没入门的菜鸟,知道要如何修改,并且编译通过,却是非常困难。 昨晚闲暇,在网上找了一些资料,自己也学着新建了一个工程。今天写下来,顺带温故一遍。 首先介绍一下操作环境: Keil 版本: Vision 4.1.0 STM32 固件库版本:V3.4.0 第一步,建立工程文件夹,在其子文件夹内拷贝并整理好相应的文件。 1.1、建
[单片机]
曾经的王者,是谁在压榨苹果的“创新空间”?
随着苹果即将抛弃三星对OLED屏幕挟持,改用LG的LED屏幕,苹果手机过去十年被三星挟持的硬件战争,终于在5G前夜拉开了新的序幕。 事实上,苹果与三星的硬件战争在2018年6月26日以前,已经明面摊牌的打了7年之久。 而今年4月,随着苹果与高通的再次和解,这家以系统闻名,并以14.85%的市场份额占据着全球手机市场73%利润的“手机公司”,终于放下了自己“只做领导者”的高贵身段,而选择从硬件配置进行破局。 来自苹果官网 这种变化,从2016年iPhone 7Plus的双摄跟进,2017年iPhone X的刘海屏创新,2018年的iPhone X max双卡双待的妥协,再到今年的三摄破局,苹果跟随安卓市场的改变与被
[嵌入式]
曾经的王者,是谁在压榨苹果的“创新空间”?
利用高速、大容量FPGA的片上RAM实现155MbpsATM
高速数据通讯应用,如155Mbps异步传输模式(ATM),需要速率相应的Buffers或FIFOs。利用现今高速、大容量FPGA上集成的大量RAM,开发为员可以满足这些需求而无需使用外置FIFOs。本文是一个基于FPGA的ADSL的设计实例,它在FPGA上采用了UTOPIA ATM接口并利用片上RAM构成了FIFOs。 本设计提供了一个基于标准的UTOPIA-1实现的介于AFSL套片和ATM分割层和组装层间的桥接器。 应用背景 互联网的流行呼唤新的网络技术,以便能提供更高带宽的连接。Cisco system所提供的ADSL网络产品包括ADSL局复用器、桥接器、路由器及调制解调器卡。 这些Cisc
[网络通信]
keil中error: #70: incomplete type is not allowed——已解决!
今天改写程序,,在b.c文件中需要引入一个a.c中的结构体变量,,我在b.c中直接extern 这个结构体,,结果编译时报错error: #70: incomplete type is not allowed最后上网查找才知道结构体不能这样引入。。 正确的引入方法是; 1.在a.h中声明这个结构体,,(结构体实体要在.h文件中) 2.在a.c中定义这个结构体类型的变量。(也可以在a.h中定义结构体变量) 3.在b.c中ertern引入这个结构体变量 当ertern一个数组时如果不定义数组大小是也会出现error: #70: incomplete type is not allowed这个错误。。 正确引入数
[单片机]
薄膜电容如何评测好坏 薄膜电容用错了会怎样
薄膜电容好坏检测 方法一 1.将电容器与电源接通,如果接通的瞬间万用表的指针不摆动,则说明电容器失效或断路。若表针一直指示电源电压,但是却不作摆动,表明电容器已短路。若表针摆动正常,但不返回零位,说明电容器有漏电现象。因为所指示的电压数值越高,表明漏电量越大。 2.测量容量小的电容器所用的辅助直流电压不能超过被测电容器的耐压,以免因测量而造成电容器击穿损坏。要想准确测量电容器的容量,需要采用电容电桥或Q表。上述的简易检测方法,只能粗略判断压力表电容器的好坏。 3.容量大的固定电容器可用万用表的电阻档(R×1000)测量电容器两电极,看表针的摆动情况,摆幅越大,表明电容器的电容量越大。若测试棒一直碰触电容器引线,表针应指在∞
[测试测量]
薄膜电容如何评测好坏 薄膜电容用错了会怎样
内存市场报告:现货价格未来将继续下滑
  DRAM和NAND闪存现货价格再度下跌。上周所有密度和技术的DRAM的平均现货价格比前一周下降3.8%,相当于1-GB的价格是1.66美元。   但这还不是最坏的消息。Gartner表示,目前DRAM平均价格处于52周低点(52周点是3.50美元),自高点下降了52.5%。   Gartner公司认为,海力士半导体关闭几家200mm工厂以及力晶半导体和尔必达计划削减DRAM产量,不会影响DRAM的供需平衡,因为200mm工厂并不生产通用DRAM。而且,这些减产行动要过一个季度之后才能看到供应下降,那时内存产业将进入需求清淡的第一季度。   再看NAND闪存市场,现货价格同样继续下跌,尽管有消息称三星电子准备敌意收购San
[焦点新闻]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved