基于ADV7125的嵌入式系统VGA接口设计

发布者:炫酷骑士最新更新时间:2023-01-12 来源: 21ic关键字:ADV7125  嵌入式系统  VGA接口 手机看文章 扫描二维码
随时随地手机看文章

目前VGA接口是计算机系统以及智能仪器中重要的标准输出接口,但是大部分硬件系统选择LCD终端输出。很多显示设备,如常见的CRT或LCD显示器一般都采用统一的15针VGA显示接口。如需要外接这些设备,则需要把LCD输出信号的接口转换为VGA接口。本设计是在三星公司芯片S3C2440平台下,利用最高频率可以达到330 MHz的ADV7125芯片,设计了能够把输出的LCD信号转换为VGA信号的转换电路。该设计方案具有电路简单、价格低廉、输出图像清晰稳定等特点。

1 ADV7125芯片介绍
ADV7125是一款单芯片、3通道、高速度的数模转换器。内置3个高速、8位、带互补输出的视频DAC、1个标准TTL输入接口,以及1个高阻抗、模拟输出电流源。它具有3个独立的8位宽输入端口。只需1个+5 V/+3.3V单电源和时钟便能工作。ADV7125还具有其他视频控制信号:复合同步信号控制端c.jpg、消隐信号控制端b.jpg,以及省电模式控制端。它能够与各种高分辨率彩色图形系统兼容。ADV7125功能框图如图1所示。

a.jpg

ADV7125有3个视频数据寄存器DATA REGISTER和一个视频控制寄存器POWER-DOWN MODE。数据寄存器的3个输入端分别连接红绿蓝三色的数字视频信号,数据寄存器后面紧跟数模转换单元,将数字信号转换为模拟信号;控制寄存器将数字的消隐信号、同步信号转换合并。数模转换后的模拟视频信号和控制寄存器输出的同步、消隐控制信号共同作为ADV7125的输出信号,此输出信号大小受Rset端和地之间接入的外加电阻RSET大小的控制。

2 ADV7125芯片用于VGA转换的基本原理
ADV7125芯片用于VGA转换的基本原理是,将S3C2440输出的数字视频信号转换为模拟的VGA输出信号,模拟的VGA输出信号的大小受ADV71 25芯片外围参考电压VREF和外加电阻RSET的控制,(VREF和RSET的具体接法如图4所示)其关系如下:
    d.jpg

式中IOG、IOR、IOB分别代表绿、红、蓝三色信号的幅度。当不用复合同步信号c.jpg时,需要把c.jpg端连接低电平,这时IOG的关系式同式(2)。


上式中的c.jpg是ADV7125的一个附加信号控制端,ADV7125的另外一个附加信号控制端是b.jpg(消隐信号控制端)。c.jpgb.jpg都是在时钟上升沿被锁存,保证像素数据流的同步。c.jpgb.jpg的功能是:通过视频同步信号的编码,影响VGA视频信号的输出。通过在模拟输出端口内部加了一个加权电流,实现此功能。这个电流的有无,由c.jpgb.jpg逻辑输入判定。


图2说明了当c.jpgb.jpg两者都为高电平时,IOR和IOB两者与IOG的对比。

e.jpg


表1详细说明了c.jpgb.jpg对模拟输出的影响。该表是在VREF=1.235 V,RSET=530 Ω,RLOAD=37.5Ω的条件下测量的。

f.jpg

对应图2和表1可得到以下结论:
    ①当IOR、IOG、IOB三端的DAC输入为0x00时,代表屏幕最黑,此时对应图2为b.jpg LEVEL,对应表1为第7行。从图2左面列表可以看到,IOR、IOB端的电流、电压分别是0mA、0V,IOG端的电流、电压分别是7.2 mA、0.271 V。即电流相差7.2 mA。
    ②当IOR、IOG、IOB三端的DAC输入为0xFF时,代表屏幕最白,此时对应图2为WHITE LEVEI,对应表1为第2行。从图2左面列表可以看到,IOR、IOB端的电流、电压分别是18.67 mA、0.7 V,IOG端的电流、电压分别是26.0 mA、0.975 V。即电流相差7.3 mA。
    从表1,可以得到以下的结论:
    ①当c.jpgb.jpg都为高电平(为1)时,IOG端口的白电平信号的电流,要比IOR、IOB端口同样情况下的电流高出7.3mA左右;视频信号电流、黑电平信号的电流,要比IOR、IOB端口同样情况下的电流高出7.2 mA左右。
    ②当c.jpg为低电平(为0)、b.jpg任意时,同样的DAC输入条件下,IOR、IOB、IOG三端的输出信号电流大小是完全一样的。
    ③当b.jpg为低电平(为0)时,无论DAC输入是多少,IOR、IOG、IOB三端的输出信号均对应于c.jpg高/低的同步无效/有效黑电平。

3 VGA接口设计
根据需要,把LCD信号转换为VGA信号,转换时必须根据VGA信号的时序进行转换。VGA信号一共包括5部分,分别是红(R)、绿(G)、蓝(B)三色信号和行(H)、场(V)同步信号,红(R)、绿(G)、蓝(B)三色信号和行(H)、场(V)同步信号根据S3C2440的配置时序,由S3C2440以数字信号的形式输出,之后由ADV7125对红(R)、绿(G)、蓝(B)三色信号进行转换,行(H)、场(V)同步信号直接进入VGA接口中,不需要转换。下面分别介绍VGA信号的时序、硬件连接、软件设计以及注意事项。

3.1 VGA时序信号
以分辨率为640x480、刷新频率为60 Hz、16位的彩色显示模式为例,VGA信号的扫描时序如图3所示。

g.jpg

在场扫描时序中,VSYNC为场同步信号,Tvsync是指显示器扫描1帧完整画面需要的时间,大小为16 667μs;VSYNC信号每场有525行,其中480行为有效显示行,45行是场消隐期。场消隐期包括场同步时间(低电平场同步脉冲)twv(2行/63μs)、场消隐前肩tHV(13行/412μs)、场消隐后肩tVH(30行/952 μs),共45行。

在行扫描时序中,HSYNC为行同步信号,Thsync是指显示器扫描一行需要的时间,大小为31.75μs,该周期通过Hsync(行同步脉冲)来同步,脉冲的宽度tWH=3.81μs。每显示行包括800点,其中640点为有效显示区,160点为行消隐期(是非显示区)。行消隐期包括行同步时间tWH(3.81μs),行消隐前肩tHC(0.516μS)和行消隐后肩tCH(1.786μs),共160个点时钟。


3.2 S3C2440和ADV7125的电路连接
设计中主要使用S3C2440处理器的LCD控制器接口,它主要通过DMA方式占用系统总线,支持彩色TFT液晶屏,支持16 bbp无调色真彩。  LCD接口数据的低8位,中间8位和高8位分别与ADV7125芯片的BLUE信号、GREEN信号和RED信号相连,这样就完成了S3C2440处理器与ADV7125芯片之间数字信号的传输。ADV7125芯片的时钟信号采用LCD接口的时钟信号,b.jpg信号与VM(VSDN)信号相连接,c.jpg同步信号接地。COMP端用于内部参考运放的补偿,用0.1μF的陶瓷电容连接在COMP与模拟电源VAA之间,防止自激振荡以增加稳定性。采用AD1580作为参考电压,AD1580输出信号稳定,能够很好地满足电路设计的需要。RSET引脚与地之间接一个530 Ω的电阻,用来控制视频信号的满幅度。在图像系统中,不会自动产生复合同步信号c.jpg,利用本设计可以实现视频同步信息编码直接进入绿色信道。如果不需要,把c.jpg输入端与逻辑低电平相连。S3C2440和ADV7125的电路连接如图4所示。其中VD0、VD1、…VD23、VDEN、CLK、HSYNC、VSYNC为S3C2440的输出端。

 

h.jpg


3.3 电路连接需要注意的问题
ADV7125可以用于灰度视频信号输出。例如:仅用于1个通道进行视频输出,这时其他两个不用的视频数据信道都应该与逻辑0相连,不用的模拟输出应该与使用的信道一样连接相同的负载。

为了实现ADV7125的最优噪声性能,对PCB的设计必须特别注意。ADV7125电源和地线上的噪声应该优化。可以通过屏蔽数字输入和提供好的退耦达到这一点。VAA和GND的引线长度应该尽量短,这样可以减小电感环路。在设计PCB时应尽量把模拟地与数字地分开,地线应该通过1个磁珠与PCB大面积铺地相连,并且磁珠应该尽可能的靠近ADV7125器件的地引脚。电路中使用的电容应该尽可能的靠近对应引脚,并且电容的引线应该尽可能的短,这样可以减小引线电容。由于使用频率非常高,时钟引线应尽可能地短,这样可以减小噪声的抖动。视频输出信号应该由数字地平面覆盖,这样可以增大高频电源抑制比

由于模拟RGB信号采用高阻电流源输出方式,可以直接驱动75 Ω的同轴传输线。长于10 m的电缆可能会对高频模拟输出脉冲衰减。使用输出缓冲可以补偿电缆的失真。这些缓冲器在整个输出电压摆幅期间,必须有足够的电流。常见的有AD84x系列的单片运放。在较高的频率下(如80 MHz),推荐使用AD848。其典型增益电路如图5所示。

i.jpg


通过简单的计算可以得知其增益为:GAIN=1+Z1/Z2。改变缓冲电路的增益器件Z1、Z2来满足所要求的视频电平。

3.4 相关的软件设置
下面以简单的测试程序为例来说明相关软件的编写。
软件设计的基本流程如图6所示。具体过程如下:

j.jpg


    ①首先对LCD的功能寄存器进行初始化,主要设置LCD控制寄存器1~5,LCD缓冲区起始地址控制寄存器;屏蔽LCD中断。
    ②其次对LCD的输出时序(VGA信号时序)进行设置。设置分辨率、周期、前(后)信号、同步脉冲。
    ③再次是对视频信号进行设置,主要是使能LCD视频信号的输出。
    ④用一幅图像的输出来测试VGA的显示是否正常。

主要代码如下所示:
k.jpg
l.jpg
m.jpg

结语
本文结合S3C2440处理器和ADV7125芯片的特点,介绍了LCD转VGA方案,该方案简单易行,适用于嵌入式系统设备的VGA信号输出。ADV-7125芯片有多种频率可供选择。本设计也可以用于灰度级输出的信号中,在此基础上进行一些简单的修改,可以满足高分辨率,高刷新频率的环境要求。


关键字:ADV7125  嵌入式系统  VGA接口 引用地址:基于ADV7125的嵌入式系统VGA接口设计

上一篇:基于Linux和MCU的心电监护仪设计
下一篇:基于zigbee与linux 的智能家居系统设计方案

推荐阅读最新更新时间:2024-11-06 21:04

三菱电机携新品亮相国际嵌入式系统展,大举拓展市场
三菱电机于8月24日携17款彩色工业用TFT液晶模块产品,亮相在深圳举行的第五届深圳国际嵌入式系统展(Embedded Expo 2016),展会首日迎来空前盛况,众多参观者聚焦三菱电机展台,共同探讨三菱电机最新产品。 图片:三菱电机亮相深圳国际嵌入式系统展 此次展会,三菱电机围绕医疗设备、工程机械、电梯、ATM/POS机、充电桩和船舶六大应用领域为客户推介优质产品,好评如潮。 在本次展会上,三菱电机重点推介为工程机械而设计的坚固型系列产品、为影视和手持设备提供的小型轻薄型系列产品、以及能满足户外使用的高性能触摸屏等新产品。 图片:参观者共同探讨三菱电机产品 耐振动及耐温度TFT液晶屏适合工程机械
[嵌入式]
三菱电机携新品亮相国际<font color='red'>嵌入式系统</font>展,大举拓展市场
基于ARM嵌入式系统的自动化配送系统
  自动化管理操作系统已经是现代企业必不可少的一部分,视频图像传输监控系统已经广泛的应用于交通、医院、银行、家居和视频会议等重要场合。早期的模拟视频监控系统不能联网,只能与管理中心进行点对点(Point—to-Point)通信,随着图像与视频处理技术、网络技术和自动控制技术的发展,视频图像系统已经过渡到了数字化的网络传输。它以数字视频的压缩、传输、存储和播放(回放)为核心,采用先进的数字图像压缩编/解码技术和传输技术,将智能图像处理与识别技术用于图像显示、调整、跟踪,根据现场环境对物体进行跟踪识别,对图像进行分析和处理。    1 自动化配送系统构成   本系统基于USB摄像头的图像采集子系统,ARM处理器子系统和无线网络
[嵌入式]
探讨基于JTAG技术的嵌入式系统测试的各个阶段
引言 IEEE 1149.1边界扫描测试标准(通常称为JTAG、1149.1或"dot 1")是一种用来进行复杂IC与电路板上的特性测试的工业标准方法,大多数复杂电子系统都以这种或那种方式用到了IEEE1149.1(JTAG)标准。为了更好地理解这种方法,本文将探讨在不同年代的系统开发与设计中是如何使用JTAG的,通过借助过去有关JTAG接入的经验或投入,推动设计向新一代发展。 大多数复杂电子系统都以这种或那种方式用到了IEEE1149.1(JTAG)标准。如果系统采用的是复杂FPGA或CPLD,那么几乎可 以肯定这些硬件是通过JTAG端口设置的。如果系统利用 仿真 工具来调试硬件或软件,那么仿真工具也很可能是通过JTAG端口
[测试测量]
探讨基于JTAG技术的<font color='red'>嵌入式系统</font>测试的各个阶段
基于EPM7312的新型嵌入式系统的实现
   1 前言   随着以计算机和软件为核心的数字化技术的迅速发展,多媒体技术与Internet 的应用迅速普及。计算机﹑通讯﹑消费电子一体化的趋势日趋明显。作为新型智能3C合一的嵌入式系统与技术进入智能化﹑网络化的发展阶段。   所谓嵌入式系统,即将应用程序和操作系统和计算机硬件集成在一起的系统。简而言之即软硬件一体化。这种系统具有小巧灵活﹑性价比高﹑自动化高﹑实时性强﹑专业性强等特点。嵌入式系统适合应用于人类工作与生活的各个领域,最为典型的应用有机顶盒﹑数字应用﹑WebTV﹑ATM/POS机﹑多媒体手机﹑袖珍电脑﹑车载导航器﹑航空电子等等。嵌入式技术已经深入人类生活和工作的方方面面,在娱乐,军事方面也有强大的应用潜力。
[嵌入式]
嵌入式系统中的目标识别技术
目标检测和识别是计算机视觉系统的一个必不可少的组成部分。在计算机视觉中,首先是将场景分解成计算机可以看到和分析的组件。 计算机视觉的第一步是特征提取,即检测图像中的关键点并获取有关这些关键点的有意义信息。特征提取过程本身包含四个基本阶段:图像准备、关键点检测、描述符生成和分类。实际上,这个过程会检查每个像素,以查看是否有特征存在于该像素中。 特征提取算法将图像描述为指向图像中的关键元素的一组特征向量。本文将回顾一系列的特征检测算法,在这个过程中,看看一般目标识别和具体特征识别在这些年经历了怎样的发展。 早期特征检测器 Scale Invariant Feature Transform (SIFT)以及 Good Featu
[嵌入式]
<font color='red'>嵌入式系统</font>中的目标识别技术
如何在开发嵌入式系统时做出明智的选择
许多系统设计师将执行软/硬件协同设计周期(图1),即同时开发硬件和软件。理解硬件与软件功能之间的关系以及对两者进行划分有助于确保完全和正确地实现系统需求。 在定义和分析需求的初期阶段,系统开发者需要与设计工程师紧密合作,将要求实现的功能分配给硬件或软件。这是根据早期系统仿真、建立原型和行为建模的结果,再加上对前面提及的多种因素的折衷以及过去的设计经验来进行分配的(图2)。一旦完成这种分配,就将开始详细的设计和实现。当同时进行硬件和软件设计时,各种不同的分析技术将被应用到实时系统的开发过程中,它们包括:硬件和软件仿真、硬件/软件协同仿真、可规划性建模(如速率单调性分析)、建立原型和增量开发。 能够用于各种不同抽象级的仿真
[单片机]
如何在开发<font color='red'>嵌入式系统</font>时做出明智的选择
基于S3C2440嵌入式系统的以太网接口电路设计方案
文章主要介绍了一个基于三星ARM9芯片S3C2440嵌入式系统的以太网接口电路设计方案,采用了工业级以太网控制器DM9000AEP成功实现了嵌入式系统网络数据交换。论文在重点阐述了网络接口电路基础之上,对Windows CE系统控制软件部分DM9000AEP的驱动程序和注册表项进行了具体分析。 随着微电子技术和计算机技术的发展,嵌入式技术得到广阔的发展,已成为现代工业控制、通信类和消费类产品发展的方向。以太网在实时操作、可靠传输、标准统一等方面的卓越性能及其便于安装、维护简单、不受通信距离限制等优点,已经被国内外很多监控、控制领域的研究人员广泛关注,并在实际应用中展露出显着的优势。本文提出了一种基于DM9000AE网络接口
[单片机]
基于S3C2440<font color='red'>嵌入式系统</font>的以太网<font color='red'>接口</font>电路设计方案
基于FPGA+DSP+ARM的数据传送总线变换器
  在飞控组件测试时,由于被测系统与上位机有一定距离,如果直接把遥测并行数据传送到上位机,将会出现数据信号的衰减和信号延时问题,有可能使信号时序错位,从而达不到系统测试的要求。为此,需要研制一种数据传送总线变换器,用来完成被测数据无失真的、实时的、远距离与上位机的通信,并能接收上位机的控制指令,实现工作状态的远程交互。    1 数据传送总线变换器的整体设计   综合考虑到测试系统实时性和可靠性的要求,选择以太网口作为数据传送总线变换器与上位机的数据转发接口,以高速串口作为控制口,采用FPGA+DSP+ARM的架构作为实时信息处理平台。   数据传送总线变换器的系统框图如图1所示。其中,FPGA作为数据预处理器,完成并行数据
[嵌入式]
基于FPGA+DSP+ARM的数据传送总线变换器
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved