基于LPC2292和CTM8231芯片实现双通道高精度采集系统的设计

发布者:Meshulun最新更新时间:2023-04-06 来源: elecfans关键字:LPC2292  双通道 手机看文章 扫描二维码
随时随地手机看文章

引言

在工业生产的很多领域都需要对生产过程进行监控管理,因此以A/D转换器为核心的数据采集系统必不可少。为了提高监控系统的准确性与可靠性,数据采集卡可选用∑一△型高分辨率的A/D转换器。而控制器局域网(CAN)能有效支持具有高安全级的分布式实时控制,凭借其在噪声环境中的可靠性及其故障状态检测,以及从故障状态恢复的能力被广泛应用于工业控制等领域。本文设计了一种关于CAN总线的双通道高精度采集系统,提高了工业控制中的信号采集处理以及传输抗干扰能力。


1 系统原理

系统选用Philips公司的LPC2292(支持实时仿真和跟踪的32位ARM7TDMI—S CPU的微控制器)作为主芯片,功耗极低,具有高速Flash存储器、多个32位定时器、2路CAN以及多达9个外部中断,特别适用于工业控制等。 Maxim公司的MAX811作为系统的复位开关,系统原理图如图1所示。双通道O~5 V的模拟信号,经过信号调理电路转换为适合ADC采样的电压信号,被2个24位精度的低功耗A/D转换器ADSl251采样;所采样的数据经过 LPC2292的处理后存入扩展的SRAM静态存储器(Cypress公司的CY7C1061AV33)当中,再通过ARM内嵌的2个CAN控制器控制2 路CTM8231(通用CAN隔离收发器)进行数据传输。其中,CP2102是ARM中UART与USB端口的桥接芯片,它将USB口模拟为串口,可在 PC机上方便地对LPC2292进行上电之前的Flash擦写等操作。

基于LPC2292和CTM8231芯片实现双通道高精度采集系统的设计

2 信号调理电路

其中一路通道的信号调理电路如图2所示。ADSl251是24位低功耗、宽动态范围、高信噪比的deIta—sigma型A/D转换器。ADSl251为差分模拟输入,当参考输入电压等于+4.096 V时,双端输入电压为一4.096~+4.096 V。本设计利用LM4040AIM3—4.1稳压管为ADC提供+4.096 V参考电压,系统时钟信号和串行时钟信号都由ARM提供。为了更好地发挥ADC的性能,最重要的是信号的满量程输入,因此在ADC双端输入的前端,采用轨到轨运算放大器0PA4350设计了一个变换电平电路。首先外部信号进入一个射随放大器,然后通过2个运算放大器进行电平移位,让0~5 V的外部信号转变为一4.096~+4.096 V的信号进入ADSl251的差分输入端。

3 CAN通信传输电路

CAN 相关电路如图3所示。LPC2292中虽然内嵌CAN控制器,但是必须与CAN收发器连接才能具备收发功能,在以往的设计中ARM和CAN收发器之间通常需要加入DC-DC电源隔离模块和高速光电耦合器组成的隔离电路,以确保在CAN总线遭受严重的干扰时控制器能够正常工作。然而考虑到复杂度、系统集成等因素,本设计中利用CTM8231接口芯片来实现带隔离的CAN收发电路。它将LPC2292中内建的CAN控制器逻辑电平转换为CAN总线的差分电平,实现起来非常简单而且有高抗电磁干扰性;每一路独立的CAN总线接口均配上120Ω的可跨接的终端匹配电阻,同时在印制板上留有可另接一其他阻值电阻的接口,以便在调试和使用过程中进行终端电阻的调整,由拨码开关选择。CAN总线上有数据传输时,用发光二极管闪烁指示。

4 软件设计

4.1 A/D转换程序设计

整个A/D转换的时间需要384个CLK时钟周期,ADsl251的工作时序如图4所示。ADS1251的输出信号DOUT/DRDY是在两种工作模式下转换的:第一种模式是DRDY(需要36个CLK时钟周期),它表明新的数据已经加载到数据输出寄存器中,可以进行读操作;第二种模式是DOUT(需要 384个CLK时钟周期),它将数据以串行方式送到数据输出寄存器DOR。DRDY模式持续t4(24个CLK时钟周期)、t2(6个CLK时钟周期)、 t2(6个CLK时钟周期)时间,然后在t3的下降沿进入DOUT模式,数据在t7之后开始输出。而LPC2292在t6时间后为ADS1251提供 SCLK时钟,并在SCLK的上升沿锁存数据,为了接收到有效数据,DOR数据输出寄存器必须在DOUT/DRDY变回到DRDY模式之前将数据读出。

A/D转换器的部分程序如下:

4.2 CAN控制器程序设计

CAN控制器的初始化流程是:首先将ARM中CAN控制器相关的硬件和连接的引脚使能,并对CAN控制器进行复位操作,设置CAN总线的通信波特率;接着是中断处理的初始化,然后配置验收过滤器(即对接收标识符的查询),最后是初始化CAN的工作模式。初始化CAN控制器之后就可以进行数据的发送与中断接收操作了。


结语

本文所设计的系统目前已经投入工业中实际使用,其运行性能稳定,信噪比在93 dB以上,采样精度为19~22位。由于LPC2292中内置了RTC实时时钟,所以本系统还可以添加实时控制的功能;也可以利用ARM剩下的I/0口等资源,辅以DC-DC电源模块、驱动芯片、继电器开关、光耦等元件实现多路可选相互隔离的稳定电源输出功能,作为工业相关领域的供电设备,以而可使系统的应用更加广泛,功能更为丰富。


关键字:LPC2292  双通道 引用地址:基于LPC2292和CTM8231芯片实现双通道高精度采集系统的设计

上一篇:基于LPC900系列单片机和红外技术实现拍照防盗系统的设计
下一篇:基于LPC2124芯片和GPRS网络实现终端系统程序的远程升级

推荐阅读最新更新时间:2024-10-11 02:42

ADI发布两款双通道模数转换器
AD7902和AD7903 PulSAR®模数转换器为工业应用提供稳定、灵活的同步采样解决方案。 中国,北京——Analog Devices, Inc. (NASDAQ:ADI)最近发布了两款16位、1 MSPS模数转换器AD7902和AD7903,分别提供伪差分和差分输入选项。AD7902双通道伪差分和AD7903双通道差分PulSAR® 模数转换器实现了同步或独立信号链,从而可在同一封装中提供两种采样解决方案。每个模数转换器消耗12 mW(1 MSPS时),功耗比最接近的竞争产品低70%。功耗根据吞吐速率上下调整,以解决高密度数据采集系统设计中的散热问题。这两款模数转换器都具有高达+/-0.5 LSB和94 dB SN
[模拟电子]
ADI发布两款<font color='red'>双通道</font>模数转换器
具可编程增益放大器的双通道宽带混频器可实现5G 无线接入
凌力尔特公司 (Linear Technology Corporation) 推出一款新宽带、高动态范围双通道混频器 LTC5566,该器件集成了可编程可变增益 IF 放大器。这款双通道混频器具非常宽的 300MHz 至 6GHz 输入频率范围,得到了专门优化,而且在新的 3.6GHz 和 4.5GHz 5G 频段以及已经使用很长时间的 4G 频段具广泛的表征。此外,该器件支持高达 400MHz 的带宽,以满足日益增多低于 6GHz 的 5G 无线接入设备的需求。这款双通道混频器提供了出色的动态范围,在 3.6GHz 时具 +11.5dBm 输入 P1dB 和 +25.5dBm 输入 IP3。在高达 5.8GHz 的较高频率时,其
[网络通信]
TI 1Gbps LVDS输入的16位双通道DAC
2008 年 4 月 11 日,德州仪器 (TI) 宣布推出高性能 16 位双通道 1 GSPS DAC 产品系列。最新单与双通道 DAC 产品系列采用 1 Gbps 低电压差分信号 (LVDS) 数据输入端口,信号带宽可达 400 MHz 。此外,该 DAC 产品系列不仅支持灵活的配置选项,还提供业界领先的工具与支持,从而能够简化设计工作,加速针对多种应用的产品上市进程,如基站、宽频带 IF 发射器、雷达以及测试测量设备。 以节省空间的封装实现了业界一流的高性能与灵活性 采用 9 毫米 x 9 毫米 小型 QFN 封装的
[模拟电子]
带LCD人机交互功能的便携式高精度数据采集系统设计
在许多传统行业中,高精度温度 数据采集 系统是不可缺少的。近年来,随着高精度ADC价格的不断下降以及其功能的不断完善,研制廉价的多路、快速、高精度温度采集系统成为了可能。美国德州仪器公司(TI)推出的带24位ADC的微处理器MSC1210,特别适合于测量高精度温度、压力 传感器 等输出的微弱信号。本文以MSC1210作为测量、信号处理以及通讯的核心,设计了高精度温度采集系统模块。该系统测量通道易于扩充,测量精度高,可以快速地进行高精度数据测量。 系统总体方案设计 本系统的硬件部分主要由前端数据采集、处理电路和后端数据处理、LCD电路组成。两部分通过RS-232串行接口进行通信。系统的总体方案构图如图1所示。 图1
[单片机]
带LCD人机交互功能的便携式<font color='red'>高精度</font>数据<font color='red'>采集系统</font>设计
基于ARM的高精度数据采集系统设计
目前,高精度数据采集系统的结构普遍采用DSP+FPGA的构架,系统结构复杂,体积大,成本高,不适用于某些领域的小型化、低成本的特殊要求。综上,设计了一种结构简单,体积小,成本低,采集精度高的数据采集系统,具有非常重要的现实意义及应用前景,能够为国内数据采集系统开发提供一定的经验和参考。 1 数据采集处理系统的工作原理和结构 嵌入式微处理器ARM具有外围配置电路简单、体积小、成本低、性能高、可靠性高和外围硬件资源丰富等优点,能够保证数据采集的实时性,而且还有较强的数据处理功能,在诸多领域的应用日趋广泛。本方案中模/数转换芯片选用16位ADS8364,系统主芯片选用意法半导体公司推出的基于ARM Cortex-M3系列32位芯片S
[单片机]
基于ARM的<font color='red'>高精度</font>数据<font color='red'>采集系统</font>设计
函数信号发生器功能评析
函数信号发生器是一种信号发生装置,能产生某些特定的周期性时间函数波形 ( 正弦波、方波、三角波、锯齿波和脉冲波等 ) 信号,频率范围可从几个微赫到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。那么大家对函数信号发生器了解多少呢,今天安泰测试Agitek就给大家简单介绍一下函数信号发生器的功能及优势。 一、双通道信号发生器的优势: 信号发生器的双通道可以相互独立输出,但往往在有些信号产生时我们需要两路具有延迟的信号。当信号发生器有两路输出时,可以内部直接设置两路的时延,而不用外接 10MHz 同步(使用同一时钟),一方面简化连接方式,另一方面能够提供精准的相位差关系。 双通道的 Rigol DG
[测试测量]
函数信号发生器功能评析
一种12位双通道高速数据采集处理系统
    摘要: 一种采样频率为33.3MHz的数据采集处理系统。该系统主要由超高速模/数转换器AD9224和先进浮点型DSP处理器TMS320C32构成。其缓存容量为256K字节,数据精度为12位。该系统是一种典型的超高速数据采集系统,具有较高的精度和速度,并且可靠性和实用性也较高。     关键词: DSP处理器 闪烁式模/数转换器 先入先出(FIFO)技术 在科学技术高度发展的现代社会,超高速数据采集处理系统越来越广泛地应用于雷达、通讯、图像、军工以及医疗化工等领域。本文介绍的是一种基于12位闪烁式模/数转换器AD9224、大容量FIFO芯片UPD42280及高性能浮点型数字信号处理器TMS320C32的高
[应用]
TI 双通道高速数字隔离器可支持更高传输速度与电磁抗干扰能力
2007 年 7 月 19 日,北京讯 日前,德州仪器 (TI) 宣布推出采用创新电容隔离技术的最新系列双通道数字隔离器,与同类竞争器件相比,该系列产品不仅支持更高的数据传输速度与电磁抗干扰能力,而且还延长了电池使用寿命。ISO7220 与 ISO7221 提高了系统性能,降低了系统成本,可满足各种高电压、高噪声应用的需求,其中包括工厂自动化、过程控制、计算机外设以及数据采集系统。(更多详情,敬请访问: http://focus.ti.com.cn/cn/paramsearch/docs/parametricsearch.tsp?family=analog&familyId=897&uiTemplateId=NODE_STRY_P
[新品]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved