一、uboot与设备树
bootloader启动内核时,会设置r0,r1,r2三个寄存器,
r0一般设置为0;
r1一般设置为machine id (uboot和Linux中都有专门的文件定义机器码)(在使用设备树时该参数没有被使用);
r2一般设置ATAGS或DTB的开始地址;
这里的machine id,是让内核知道是哪个CPU,从而调用对应的初始化函数。
以前没有使用设备树时,需要bootloader传一个machine id给内核,现在使用设备树的话,这个参数就不需要设置了!
r2要么是以前的ATAGS开始地址,使用设备树后是DTB文件开始地址!
uboot加载dtb:
可以从flash读取;
或者在线加载,例如 tftpboot 32000000 smdk.dtb,把设备树加载到0x32000000
uboot传递dtb:
bootm 31000000 - 32000000 (uImage地址、文件系统地址、DTB设备树地址)
二、Linux与设备树
head.S的内容
内核head.S所做工作如下:
a. __lookup_processor_type : 使用汇编指令读取CPU ID, 根据该ID找到对应的proc_info_list结构体(里面含有这类CPU的初始化函数、信息)
b. __vet_atags : 判断是否存在可用的ATAGS或DTB
c. __create_page_tables : 创建页表, 即创建虚拟地址和物理地址的映射关系
d. __enable_mmu : 使能MMU, 以后就要使用虚拟地址了
e. __mmap_switched : 上述函数里将会调用__mmap_switched
f. 把bootloader传入的r2参数, 保存到变量__atags_pointer中
g. 调用C函数start_kernel
head.S和head-common.S最终效果:
把bootloader传来的r1值, 赋给了C变量: __machine_arch_type
把bootloader传来的r2值, 赋给了C变量: __atags_pointer
例如:
__atags_pointer = 80000100,__machine_arch_type=1685
start_kernel的调用过程如下:
start_kernel // init/main.c
setup_arch(&command_line); // arch/arm/kernel/setup.c
mdesc = setup_machine_fdt(__atags_pointer); // arch/arm/kernel/devtree.c
early_init_dt_verify(phys_to_virt(dt_phys) // 判断是否有效的dtb, drivers/of/ftd.c
initial_boot_params = params;
mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach); // 找到最匹配的machine_desc, drivers/of/ftd.c
while ((data = get_next_compat(&compat))) {
score = of_flat_dt_match(dt_root, compat);
if (score > 0 && score < best_score) {
best_data = data;
best_score = score;
}
}
machine_desc = mdesc;
内核如何匹配板子
1、不适用设备树时:
uboot传递的machine id 与 内核machine_desc结构体的.nr比较,相等就表示找到了对应的machine_desc。
2、使用设备树时:
model = "SMDK24440";
compatible = "samsung,smdk2440","samsung,smdk24140","samsung,smdk24xx";
使用compatile属性的值, 跟每一个machine_desc.dt_compat 比较,匹配。
static const char *const s3c2416_dt_compat[] __initconst = {
"samsung,s3c2416",
"samsung,s3c2450",
NULL
};
DT_MACHINE_START(S3C2416_DT, "Samsung S3C2416 (Flattened Device Tree)")
.dt_compat = s3c2416_dt_compat,
.map_io = s3c2416_dt_map_io,
.init_irq = irqchip_init,
.init_machine = s3c2416_dt_machine_init,
MACHINE_END
扩展为:
static const struct machine_desc __mach_desc_S3C2416_DT __used __attribute__((__section__(".arch.info.init"))) = {
.nr = ~0,
.name = "Samsung S3C2416 (Flattened Device Tree)",
.dt_compat = s3c2416_dt_compat,
.map_io = s3c2416_dt_map_io,
.init_irq = irqchip_init,
.init_machine = s3c2416_dt_machine_init,
}
对设备树信息的处理
start_kernel // init/main.c
setup_arch(&command_line); // arch/arm/kernel/setup.c
mdesc = setup_machine_fdt(__atags_pointer); // arch/arm/kernel/devtree.c
early_init_dt_scan_nodes(); // drivers/of/ftd.c
/* Retrieve various information from the /chosen node */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
/* Initialize {size,address}-cells info */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
/* Setup memory, calling early_init_dt_add_memory_arch */
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
总结:
a. /chosen节点中bootargs属性的值, 存入全局变量: boot_command_line
b. 确定根节点的这2个属性的值: #address-cells,#size-cells,存入全局变量: dt_root_addr_cells, dt_root_size_cells
c. 解析/memory中的reg属性, 提取出"base, size", 最终调用memblock_add(base, size);
节点信息转化为device_node 结构体信息:
struct device_node {
const char *name; // 来自节点中的name属性, 如果没有该属性, 则设为"NULL"
const char *type; // 来自节点中的device_type属性, 如果没有该属性, 则设为"NULL"
phandle phandle;
const char *full_name; // 节点的名字, node-name[@unit-address]
struct fwnode_handle fwnode;
struct property *properties; // 节点的属性
struct property *deadprops; /* removed properties */
struct device_node *parent; // 节点的父亲
struct device_node *child; // 节点的孩子(子节点)
struct device_node *sibling; // 节点的兄弟(同级节点)
#if defined(CONFIG_OF_KOBJ)
struct kobject kobj;
#endif
unsigned long _flags;
void *data;
#if defined(CONFIG_SPARC)
const char *path_component_name;
unsigned int unique_id;
struct of_irq_controller *irq_trans;
#endif
};
device_node结构体表示一个节点,property结构体表示节点的具体属性。
properties结构体的定义如下:
struct property {
char *name; // 属性名字, 指向dtb文件中的字符串
int length; // 属性值的长度
void *value; // 属性值, 指向dtb文件中value所在位置, 数据仍以big endian存储
struct property *next;
#if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC)
unsigned long _flags;
#endif
#if defined(CONFIG_OF_PROMTREE)
unsigned int unique_id;
#endif
#if defined(CONFIG_OF_KOBJ)
struct bin_attribute attr;
#endif
};
device_node转换为platform_device
a. 内核函数of_platform_default_populate_init, 遍历device_node树, 生成platform_device
b. 并非所有的device_node都会转换为platform_device只有以下的device_node会转换:
b.1 该节点必须含有compatible属性
b.2 根节点的子节点(节点必须含有compatible属性)
b.3 含有特殊compatible属性的节点的子节点(子节点必须含有compatible属性):
这些特殊的compatilbe属性为: “simple-bus”,“simple-mfd”,“isa”,"arm,amba-bus "
根节点是例外的,生成platfrom_device时,即使有compatible属性也不会处理
/mytest会被转换为platform_device,
因为它兼容"simple-bus", 它的子节点/mytest/mytest@0 也会被转换为platform_device
/i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
/i2c/at24c02节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个i2c_client。
类似的也有/spi节点, 它一般也是用来表示SPI控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
/spi/flash@0节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个spi_device。
of_platform_default_populate_init (drivers/of/platform.c) 生成platform_device的过程:
遍历device树:
of_platform_default_populate_init
of_platform_default_populate(NULL, NULL, NULL);
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL)
for_each_child_of_node(root, child) {
rc = of_platform_bus_create(child, matches, lookup, parent, true); // 调用过程看下面
dev = of_device_alloc(np, bus_id, parent); // 根据device_node节点的属性设置platform_device的resource
if (rc) {
of_node_put(child);
break;
}
}
of_platform_bus_create(bus, matches, …)的调用过程(处理bus节点生成platform_devie, 并决定是否处理它的子节点):
dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent); // 生成bus节点的platform_device结构体
if (!dev || !of_match_node(matches, bus)) // 如果bus节点的compatile属性不吻合matches成表, 就不处理它的子节点
return 0;
for_each_child_of_node(bus, child) { // 取出每一个子节点
pr_debug(" create child: %pOFn", child);
rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict); // 处理它的子节点, of_platform_bus_create是一个递归调用
if (rc) {
of_node_put(child);
break;
}
}
a. 注册 platform_driver 的过程:
platform_driver_register
__platform_driver_register
drv->driver.probe = platform_drv_probe;
driver_register
bus_add_driver
klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers); // 把 platform_driver 放入 platform_bus_type 的driver链表中
driver_attach
上一篇:病症:arm启动后应用程序界面显示不正常
下一篇:RK30SDK系统重启源码分析
推荐阅读最新更新时间:2024-11-13 00:10
推荐帖子
- Altium Designer 19 元件符号库设计之基本菜单工具的介绍
- 元件符号是元器件在原理图上的表现形式,由元件边框、管脚(包括管脚序号和管脚名称)、元件名称、元件说明组成,通过管脚建立电气连接关系。元件边框不用和元件实物一样,但管脚序号和名称必须严格按照元件规格书的说明一一对应。AltiumDesigner19元件符号库设计之基本菜单工具的介绍顶一下,新版本AD19制作元件库的利器
- 大傻子哈哈哈 PCB设计
- 关于LPC800迷你版谁有一个点灯的例子
- 如题拿到个把月了,还是不能点亮板子上的灯很着急啊关于LPC800迷你版谁有一个点灯的例子如果不是你的板子坏了,那么你一定是吓到我了先看看手册,关于开关矩阵的用法啥的,怎么会LED都点不亮? 有这么难吗?今天晚上我给你传一个回复楼主wgsxsm的帖子点灯我已经成功了呵呵回复楼主wgsxsm的帖子
- wgsxsm NXP MCU
- 【设计工具】设计与验证:Verilog+HDL(清晰带书签)
- 【设计工具】设计与验证:Verilog+HDL(清晰带书签)顶顶顶顶顶!非常好的一本书非常好的一本书
- 8fu8 FPGA/CPLD
- 分享PIC入门的实例以及PIC单片机C语言的入门
- 关于PIC入门的学习资料以及实例分享PIC入门的实例以及PIC单片机C语言的入门东西是好东西,我怎么购买了两边才看到?楼主真是不地道,有些程序都是空的!!还购买两遍才能下载!!:Mad:楼主真是不地道,有些程序都是空的!
- pengfei0827 Microchip MCU
- 【平头哥RVB2601创意应用开发】+RTC电子时钟
- RTC是一种重要的实时时钟计时器,用它可以辅助数据采集时间的标记。此外,它还能方便地实现电子时钟的制作,图1就是它的运行效果。图1电子时钟在设计过程中,主要涉及的头文件有:stdio.h、soc.h及rtc.h。所涉及的RTC函数主要有:RTC初始化函数csi_rtc_init)、RTC数据值设置函数及RTC时间获取函数csi_rtc_get_time()。实现显示效果的主程序为:intmain(void){ csi_
- jinglixixi 玄铁RISC-V活动专区
- 【2024 DigiKey 创意大赛】”双光融合“智能热像仪 作品总结与提交
- 双光融合智能热像仪作者:JOEYCH 作品简介本项目为一款双光融合智能热像仪,双光融合指的是可见图像与热图像相融合。该设备硬件上基于高性能STM32H7微控制器,软件上基于使用micropython语言的OPENMV开源项目和TensorFlowLiteAI模型框架,实现了图像采集的高效率和手写数字分析的高精度。听取秦天大佬的建议,添加LCD触摸屏提供直观的用户交互体验,支持模式的快速切换和实
- JOEYCH DigiKey得捷技术专区