何谓ADC?STM32中的ADC有什么功能?

发布者:Chunjie2022最新更新时间:2023-06-21 来源: elecfans关键字:ADC  STM32  输入时钟 手机看文章 扫描二维码
随时随地手机看文章

ADC简介

STM32F103系列有3个ADC,精度为12位,每个ADC最多有16个外部通道。其中ADC1和ADC2都有16个外部通道,ADC3一般有8个外部通道,各通道的A/D转换可以单次、连续、扫描或间断执行,ADC转换的结果可以左对齐或右对齐储存在16位数据寄存器中。ADC的输入时钟不得超过14MHz,其时钟频率由PCLK2分频产生。


ADC功能框图讲解

学习STM32开发板上的外设时首先要了解其外设的功能框图,如下:

poYBAGDDMuiAS-GNAACb_caVkgY459.jpg

功能框图可以大体分为7部分,下面一一讲解:

电压输入范围

ADC所能测量的电压范围就是VREF- ≤ VIN ≤ VREF+,把 VSSA 和 VREF-接地,把 VREF+和 VDDA 接 3V3,得到ADC 的输入电压范围为:0~3.3V。

输入通道

ADC的信号输入就是通过通道来实现的,信号通过通道输入到单片机中,单片机经过转换后,将模拟信号输出为数字信号。STM32中的ADC有着18个通道,其中外部的16个通道已经在框图中标出,如下:

pYYBAGDDMvSAX3AIAAAvSpqtak8454.jpg

这16个通道对应着不同的IO口,此外ADC1/2/3 还有内部通道:ADC1 的通道 16 连接到了芯片内部的温度传感器, Vrefint 连接到了通道 17。ADC2 的模拟通道 16 和 17 连接到了内部的 VSS。

ADC的全部通道如下图所示:

poYBAGDDMvuAEoFaAAGmLvYI1Ls733.jpg

外部的16个通道在转换时又分为规则通道和注入通道,其中规则通道最多有16路,注入通道最多有4路(注入通道貌似使用不多),下面简单介绍一下两种通道:

规则通道顾名思义就是,最平常的通道、也是最常用的通道,平时的ADC转换都是用规则通道实现的。

注入通道是相对于规则通道的,注入通道可以在规则通道转换时,强行插入转换,相当于一个“中断通道”吧。当有注入通道需要转换时,规则通道的转换会停止,优先执行注入通道的转换,当注入通道的转换执行完毕后,再回到之前规则通道进行转换。

转换顺序

知道了ADC的转换通道后,如果ADC只使用一个通道来转换,那就很简单,但如果是使用多个通道进行转换就涉及到一个先后顺序了,毕竟规则转换通道只有一个数据寄存器。多个通道的使用顺序分为俩种情况:规则通道的转换顺序和注入通道的转换顺序。

规则通道中的转换顺序由三个寄存器控制:SQR1、SQR2、SQR3,它们都是32位寄存器。SQR寄存器控制着转换通道的数目和转换顺序,只要在对应的寄存器位SQx中写入相应的通道,这个通道就是第x个转换。具体的对应关系如下:

pYYBAGDDMwGAOoBgAAGPfk5r8PI555.jpg

通过SQR1寄存器就能了解其转换顺序在寄存器上的实现了:

pYYBAGDDMwmADyywAAEd9scfMG4849.jpg

和规则通道转换顺序的控制一样,注入通道的转换也是通过注入寄存器来控制,只不过只有一个JSQR寄存器来控制,控制关系如下:

pYYBAGDDMxGAVK2cAAEXAMt3Uu4445.jpg

需要注意的是,只有当JL=4的时候,注入通道的转换顺序才会按照JSQ1、JSQ2、JSQ3、JSQ4的顺序执行。当JL《4时,注入通道的转换顺序恰恰相反,也就是执行顺序为:JSQ4、JSQ3、JSQ2、JSQ1。

配置转换顺序的函数如下代码所示:

/** * @brief Configures for the selected ADC regular channel its corresponding * rank in the sequencer and its sample time. * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral. * @param ADC_Channel: the ADC channel to configure. * This parameter can be one of the following values: * @arg ADC_Channel_0: ADC Channel0 selected * @arg ADC_Channel_1: ADC Channel1 selected * @arg ADC_Channel_2: ADC Channel2 selected * @arg ADC_Channel_3: ADC Channel3 selected * @arg ADC_Channel_4: ADC Channel4 selected * @arg ADC_Channel_5: ADC Channel5 selected * @arg ADC_Channel_6: ADC Channel6 selected * @arg ADC_Channel_7: ADC Channel7 selected * @arg ADC_Channel_8: ADC Channel8 selected * @arg ADC_Channel_9: ADC Channel9 selected * @arg ADC_Channel_10: ADC Channel10 selected * @arg ADC_Channel_11: ADC Channel11 selected * @arg ADC_Channel_12: ADC Channel12 selected * @arg ADC_Channel_13: ADC Channel13 selected * @arg ADC_Channel_14: ADC Channel14 selected * @arg ADC_Channel_15: ADC Channel15 selected * @arg ADC_Channel_16: ADC Channel16 selected * @arg ADC_Channel_17: ADC Channel17 selected * @param Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16. * @param ADC_SampleTime: The sample time value to be set for the selected channel. * This parameter can be one of the following values: * @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles * @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles * @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles * @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles * @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles * @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles * @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles * @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles * @retval None */void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime){ 函数内容略;}

触发源

ADC转换的输入、通道、转换顺序都已经说明了,但ADC转换是怎么触发的呢?就像通信协议一样,都要规定一个起始信号才能传输信息,ADC也需要一个触发信号来实行模/数转换。

其一就是通过直接配置寄存器触发,通过配置控制寄存器CR2的ADON位,写1时开始转换,写0时停止转换。在程序运行过程中只要调用库函数,将CR2寄存器的ADON位置1就可以进行转换,比较好理解。

另外,还可以通过内部定时器或者外部IO触发转换,也就是说可以利用内部时钟让ADC进行周期性的转换,也可以利用外部IO使ADC在需要时转换,具体的触发由控制寄存器CR2决定。

在参考手册中可以找到,ADC_CR2寄存器的详情如下:

poYBAGDDMxmAbzaFAAC45Pa4PWQ154.jpg

pYYBAGDDMx-AUfLyAACEAMDBCvA024.jpg

pYYBAGDDMyeAUQQeAAB5PWs-404994.jpg

转换时间

还有一点,就是转换时间的问题,ADC的每一次信号转换都要时间,这个时间就是转换时间,转换时间由输入时钟和采样周期来决定。

由于ADC在STM32中是挂载在APB2总线上的,所以ADC得时钟是由PCLK2(72MHz)经过分频得到的,分频因子由 RCC 时钟配置寄存器RCC_CFGR 的位 15:14 ADCPRE[1:0]设置,可以是 2/4/6/8 分频,一般配置分频因子为8,即8分频得到ADC的输入时钟频率为9MHz。

采样周期是确立在输入时钟上的,配置采样周期可以确定使用多少个ADC时钟周期来对电压进行采样,采样的周期数可通过 ADC采样时间寄存器 ADC_SMPR1 和 ADC_SMPR2 中的 SMP[2:0]位设置,ADC_SMPR2 控制的是通道 0~9, ADC_SMPR1 控制的是通道 10~17。每个通道可以配置不同的采样周期,但最小的采样周期是1.5个周期,也就是说如果想最快时间采样就设置采样周期为1.5.

转换时间=采样时间+12.5个周期

12.5个周期是固定的,一般我们设置 PCLK2=72M,经过 ADC 预分频器能分频到最大的时钟只能是 12M,采样周期设置为 1.5 个周期,算出最短的转换时间为 1.17us。

数据寄存器

转换完成后的数据就存放在数据寄存器中,但数据的存放也分为规则通道转换数据和注入通道转换数据的。

规则数据寄存器负责存放规则通道转换的数据,通过32位寄存器ADC_DR来存放:

poYBAGDDMy2APsMrAADWScQf8r0750.jpg

当使用ADC独立模式(也就是只使用一个ADC,可以使用多个通道)时,数据存放在低16位中,当使用ADC多模式时高16位存放ADC2的数据。需要注意的是ADC转换的精度是12位,而寄存器中有16个位来存放数据,所以要规定数据存放是左对齐还是右对齐。

当使用多个通道转换数据时,会产生多个转换数据,然鹅数据寄存器只有一个,多个数据存放在一个寄存器中会覆盖数据导致ADC转换错误,所以我们经常在一个通道转换完成之后就立刻将数据取出来,方便下一个数据存放。一般开启DMA模式将转换的数据,传输在一个数组中,程序对数组读操作就可以得到转换的结果。

DMA的使用之前介绍过:DMA介绍。

注入通道转换的数据寄存器有4个,由于注入通道最多有4个,所以注入通道转换的数据都有固定的存放位置,不会跟规则寄存器那样产生数据覆盖的问题。ADC_JDRx 是 32 位的,低 16 位有效,高 16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由ADC_CR2 的 11 位 ALIGN 设置。

pYYBAGDDMzOAUBJFAADKUNGFdPM297.jpg

中断

pYYBAGDDMzqAJ2mjAAB8uYXKWNg783.jpg

从框图中可以知道数据转换完成之后可以产生中断,有三种情况:

规则通道数据转换完成之后,可以产生一个中断,可以在中断函数中读取规则数据寄存器的值。这也是单通道时读取数据的一种方法。

注入通道数据转换完成之后,可以产生一个中断,并且也可以在中断中读取注入数据寄存器的值,达到读取数据的作用。

当输入的模拟量(电压)不再阈值范围内就会产生看门狗事件,就是用来监视输入的模拟量是否正常。

以上中断的配置都由ADC_SR寄存器决定:

poYBAGDDM0KAeuXTAAC3ZksmZyA691.jpg

当然,在转换完成之后也可以产生DMA请求,从而将转换好的数据从数据寄存器中读取到内存中。

电压转换

要知道,转换后的数据是一个12位的二进制数,我们需要把这个二进制数代表的模拟量(电压)用数字表示出来。比如测量的电压范围是0~3.3V,转换后的二进制数是x,因为12位ADC在转换时将电压的范围大小(也就是3.3)分为4096(2^12)份,所以转换后的二进制数x代表的真实电压的计算方法就是:

y=3.3* x / 4096

初始化结构体

每个外设的核心就是其对应的初始化结构体了,ADC的初始化结构体代码如下:

typedef struct { uint32_t ADC_Mode; // ADC 工作模式选择 FunctionalState ADC_ScanConvMode; // ADC 扫描(多通道)或者单次(单通道)模式选择 FunctionalState ADC_ContinuousConvMode; // ADC 单次转换或者连续转换选择 uint32_t ADC_ExternalTrigConv; // ADC 转换触发信号选择 uint32_t ADC_DataAlign; // ADC 数据寄存器对齐格式 uint8_t ADC_NbrOfChannel; // ADC 采集通道数 } ADC_InitTypeDef;

通过配置初始化结构体来设置ADC的相关信息。

单通道电压采集

用这个程序来简单熟练一下ADC的单通道电压采集吧,程序使用了ADC1的通道11,对应的IO口是PC^1,因为博主的开发板上PC ^1引脚没有任何复用,使用中断,在中断中读取转换的电压。

头文件

为了提高文件的可移植性,头文件中定义了一些与ADC和中断相关的量,在移植程序的时候只需要修改头文件中的定义即可。

#ifndef __ADC_H#define __ADC_H#include “stm32f10x.h”/* 采用ADC1的通道11 引脚为PC^1 模式必须是模拟输入*/#define ADC_GPIO_RCC RCC_APB2Periph_GPIOC#define ADC_GPIO_PORT GPIOC#define ADC_GPIO_PIN GPIO_Pin_1#define ADC_GPIO_MODE GPIO_Mode_AIN /* 配置与中断有关的信息 */#define ADC_IRQn ADC1_2_IRQn#define ADC_RCC RCC_APB2Periph_ADC1/* 配置ADC初始化结构体的宏定义 */#define ADCx ADC1#define ADCx_ContinuousConvMode ENABLE //连续转换模式#define ADCx_DataAlign ADC_DataAlign_Right //转换结果右对齐#define ADCx_ExternalTrigConv ADC_ExternalTrigConv_None //不使用外部触发转换,采用软件触发#define ADCx_Mode ADC_Mode_Independent //只使用一个ADC,独立模式#define ADCx_NbrOfChannel 1 //一个转换通道#define ADCx_ScanConvMode DISABLE //禁止扫描模式,多通道时使用/* 通道信息和采样周期 */#define ADC_Channel ADC_Channel_11#define ADC_SampleTime ADC_SampleTime_55Cycles5/* 函数声明 */void ADC_COnfig(void);void ADC_NVIC_Config(void);void ADC_GPIO_Config(void);void ADCx_Init(void);#endif /* __ADC_H */

引脚配置函数

首先配置相应的GPIO引脚,毕竟模拟信号是通过GPIO引脚传输到开发板的,注意的是,引脚的模式一定要是模拟输入!

void ADC_GPIO_Config(void){GPIO_InitTypeDef GPIO_InitStruct;RCC_APB2PeriphClockCmd(ADC_GPIO_RCC, ENABLE);GPIO_InitStruct.GPIO_Pin = ADC_GPIO_PIN ;GPIO_InitStruct.GPIO_Mode = ADC_GPIO_MODE ;GPIO_Init(ADC_GPIO_PORT , &GPIO_InitStruct);}

配置引脚就是老套路:声明结构体变量、开启时钟、写入结构体、初始化GPIO。

NVIC配置函数

因为我们是在转换完成后利用中断,在中断函数中读取数据,所以要首先配置中断函数的优先级,因为程序中只有这一个中断,所以优先级的配置就比较随意。

void ADC_NVIC_Config(void){NVIC_InitTypeDef NVIC_InitStruct ;/* 配置中断优先级分组(设置抢占优先级和子优先级的分配),在函数在misc.c */NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ;/* 配置初始化结构体 在misc.h中 *//* 配置中断源 在stm32f10x.h中 */NVIC_InitStruct.NVIC_IRQChannel = ADC_IRQn ;/* 配置抢占优先级 */NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1 ;/* 配置子优先级 */NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1 ;/* 使能中断通道 */NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE ;/* 调用初始化函数 */NVIC_Init(&NVIC_InitStruct) ;}

ADC配置函数

ADC的配置函数是ADC的精髓,在这个函数中包含的内容有:ADC的初始化结构体配置、配置了时钟分频、配置了通道转换顺序、打开转换中断、进行校准、软件触发ADC采集等。

函数中都有详细的注释:

void ADC_COnfig(void){ ADC_InitTypeDef ADC_InitStruct; RCC_APB2PeriphClockCmd(ADC_RCC, ENABLE); /* 配置初始化结构体,详情见头文件 */ ADC_InitStruct.ADC_ContinuousConvMode = ADCx_ContinuousConvMode ; ADC_InitStruct.ADC_DataAlign = ADCx_DataAlign ; ADC_InitStruct.ADC_ExternalTrigConv = ADCx_ExternalTrigConv ; ADC_InitStruct.ADC_Mode = ADCx_Mode ; ADC_InitStruct.ADC_NbrOfChannel = ADCx_NbrOfChannel ; ADC_InitStruct.ADC_ScanConvMode = ADCx_ScanConvMode ; ADC_Init(ADCx, &ADC_InitStruct); /* 配置ADC时钟为8分频,即9M */ RCC_ADCCLKConfig(RCC_PCLK2_Div8); /* 配置ADC通道转换顺序和时间 */ ADC_RegularChannelConfig(ADCx, ADC_Channel, 1, ADC_SampleTime ); /* 配置为转换结束后产生中断 在中断中读取信息 */ ADC_ITConfig(ADCx, ADC_IT_EOC,ENABLE); /* 开启ADC,进行转换 */ ADC_Cmd(ADCx, ENABLE ); /* 重置ADC校准 */ ADC_ResetCalibration(ADCx); /* 等待初始化完成 */ while(ADC_GetResetCalibrationStatus( ADCx)) /* 开始校准 */ ADC_StartCalibration(ADCx); /* 等待校准完成 */ while (ADC_GetCalibrationStatus(ADCx)); /* 软件触发ADC转换 */ ADC_SoftwareStartConvCmd(ADCx, ENABLE);}

中断函数

在中断函数中进行读取数据,将数据存放在变量result中,此处使用关键字extern声明,代表变量result已经在其他文件中定义,关于extern的介绍在之前发的文章中有extern关键字的介绍。

extern uint16_t resurt;void ADC1_2_IRQHandler(void){ /* 判断产生中断请求 */ while(ADC_GetITStatus(ADCx, ADC_IT_EOC) == SET) resurt=ADC_GetConversionValue(ADCx); /* 清除中断标志 */ ADC_ClearITPendingBit(ADCx, ADC_IT_EOC);}

主函数

主函数负责接收转换的值,并将其转换为电压值,然后通过串口打印在计算机上,便于调试。

变量result是主函数中的全局变量,注意最后的结果应该转换为浮点型。

#include “stm32f10x.h”#include “usart.h”#include “adc.h”uint16_t result;void delay(void){ uint16_t k=0xffff; while(k--);}int main(void){ float voltage; /* 串口调试函数 */ DEBUG_USART_Config(); /* 与ADC相关的函数打包在此函数中 */ ADCx_Init(); while(1) { /* 强制转换为浮点型 */ voltage = (float) result/4096*3.3; printf(“ 电压值为:%f ”,voltage); delay(); }}


关键字:ADC  STM32  输入时钟 引用地址:何谓ADC?STM32中的ADC有什么功能?

上一篇:STM32CubeMx GPIO基本使用方法
下一篇:一文读懂STM32的基本系统

推荐阅读最新更新时间:2024-11-20 19:20

STM32 —— 多路ADC采集
#ifndef _ADC_H_ #define _ADC_H_ #include type.h #include debug.h void ADCInit(void); uint16_t ADCGetData(uint8_t channel); uint16_t ADCGetAverage(uint8_t channel, uint8_t times); #ifndef CONFIG_CAN void adc_test(void); #endif #endif /* _ADC_H_ */ // input1~5 -- 模拟量IO口; input6~10 -- 普通IO口用 #define ADC_CHANNEL
[单片机]
stm32专题十四:存储器介绍
存储器通常分为易失性存储器(RAM - random access memory)和非易失性存储器(ROM - read only memory) 易失性存储器 SRAM:Static Random Access Memory(静态随机存储器),基本的存储单元由SR锁存器组成,不需要定时刷新。 DRAM:Dynamic Random Access Memory(静态随机存储器),由电容和晶体管组成,结构非常简单。动态随机存储器 DRAM 的存储单元以电容的电荷来表示数据,有电荷代表 1,无电荷代表 0。但时间一长,代表 1 的电容会放电,代表 0 的电容会吸收电荷,因此它需要定期刷新操作。刷新操作会对电容进行检查,若电
[单片机]
<font color='red'>stm32</font>专题十四:存储器介绍
Maxim推出业内尺寸最小的双极性±5V、16位模数转换器(ADC)
中国,北京,2012年12月13日。Maxim Integrated Products, Inc. (NASDAQ: MXIM)推出业内尺寸最小的双极性±5V、16位模数转换器(ADC) MAX11166和MAX11167,现已开始供货。MAX11166和MAX11167采用微型9mm2封装,是仅有的内置带缓冲基准的12引脚、16位双极性ADC,与竞争方案相比大大降低了成本,并可节省至少88%的电路板空间。该系列高度集成ADC采用超摆幅(Beyond-the-Rails™)技术,在正5V单电源供电条件下能够处理±5V输入信号,无需额外的负电源,有效简化系统设计。19.5mW (500ksps采样速率)、1μA 关断电流的低功耗
[模拟电子]
Maxim推出业内尺寸最小的双极性±5V、16位<font color='red'>模数转换器</font>(<font color='red'>ADC</font>)
STM32数组越界问题
前段时间在写STM32程序时,发现定义的局部变量会发生莫名其妙的数组越界,改变其定义顺序问题竟然得到解决,怀疑是堆栈空间没有分配够,于是决定追根溯源,查到一些资料,将startup_stm32f10x_hd.s中的栈空间改大即可: Stack_Size EQU 0x00000400;栈空间大小; AREA STACK, NOINIT, READWRITE, ALIGN=3 Stack_Mem SPACE Stack_Size __initial_sp ; h Heap Configuration ; o Heap Size (in B
[单片机]
STM32时钟分解与解析
  学习STM32的同学知道,STM32有好多时钟,如32.768Khz,8Mhz,被时钟树搞迷糊了,下面一一解析。   HSE:高速外部时钟信号(4--16Mhz 常用的为8Mhz)   HSI:高速内部时钟信号(8Mhz)   LSI:低速内部时钟信号(在30kHz和60kHz之间,约40Khz)   LSE:低速外部时钟信号(32.768Khz)   这些时钟到底有什么用呢?大致可以分为两块:   1、系统时钟:   系统时钟主要有下面三种时钟源可提供,其中PLL时钟源有HSI(高速内部时钟)或HSE(高速外部时钟)提供   (1) HSI(高速内部时钟)振荡器时钟   (2)HSE(高速外部时钟)振荡器时钟   (3)P
[单片机]
精密逐次逼近型ADC基准电压源的设计方案
基准电压输入 逐次逼近型ADC的简化原理图见图1.采样间隔期间,容性DAC连接至ADC输入,并且与输入电压成比例的电荷被存储在电容器中。转换开始后,DAC从输入端断开。转换算法逐个开关每一位至基准电压或地。电容上的电荷再分配可导致电流流入或流出基准电压源。动态电流负载是ADC吞吐速率和控制位检验的内部时钟的函数。最高有效位(MSB)保持大部分的电荷,需要大部分电流。     图1. 16位逐次接近型ADC原理简化图 图2显示AD7980 、16位、1 MSPS、PulSAR? 逐次逼近型ADC基准电压输入端的动态电流负载。通过观察基准电压源和基准电压引脚之间500 Ω电阻上的电压降,得出测量值。曲线显示电流尖峰高达2.5 mA,
[电源管理]
精密逐次逼近型<font color='red'>ADC</font>基准电压源的设计方案
STM32之RCC配置
采用8MHz 外部HSE 时钟,程序的时钟设置参数流程如下: 1.将 RCC 寄存器重新设置为默认值:RCC_DeInit(); 2.打开外部高速时钟晶振 HSE :RCC_HSEConfig(RCC_HSE_ON); 3.等待外部高速时钟晶振工作: HSEStartUpStatus = RCC_WaitForHSEStartUp(); 4.设置 AHB 时钟 (HCLK) :RCC_HCLKConfig(RCC_SYSCLK_Div1); 5.设置APB 2时钟 (APB2) :RCC_PCLK2Config(RCC_HCLK_Div1);
[单片机]
高速12位模数转换器AD7892及其在图像采集中的应用
摘要: AD7892是美国AD公司生产的LC2MOS型单电源12位模数转换器,可并行或串行输出,文中介绍了它的功能、特点,工作时序以及在图像采集系统中的应用电路。 1 AD7892的特点及功能 AD7892是美国ANALOG DEVICE公司生产的具有采样保护功能的逐次逼近式12位高速ADC,根据输入模拟信号范围的不同可分为AD7892-1,AD7892-2,AD7892-3三种类型。其中,AD7892-1输入信号范围为±10V或者±5V(可设置),AD7892-2输入信号范围为0~+2.5V,这两种的采样转换速率均为500kSPS,AD7892-3的输入信号范围为±2.5V,采样转换速率为600kSPS,AD78
[模拟电子]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved