使用51单片机实现SHT11温湿度传感器检测的程序和电路图

发布者:码农侠最新更新时间:2023-08-28 来源: elecfans关键字:51单片机  SHT11 手机看文章 扫描二维码
随时随地手机看文章

下面是原理图:

下面是与MCU连接的典型电路:

下面是源代码:

#include 《reg52.h》

#include 《intrins.h》

/********************************************************

宏定义

********************************************************/

#define uint unsigned int

#define uchar unsigned char

#define noACK 0

#define ACK 1

#define STATUS_REG_W 0x06

#define STATUS_REG_R 0x07

#define MEASURE_TEMP 0x03

#define MEASURE_HUMI 0x05

#define RESET 0x1e

enum {TEMP,HUMI};

typedef union //定义共用同类型

{

unsigned int i;

float f;

} value;

/********************************************************

位定义

********************************************************/

sbit lcdrs=P2^0;

sbit lcdrw=P2^1;

sbit lcden=P2^2;

sbit SCK = P1^0;

sbit DATA = P1^1;

/********************************************************

********************************************************/

uchar table2[]=“SHT11 温湿度检测”;

uchar table3[]=“温度为: ℃”;

uchar table4[]=“湿度为:”;

uchar table5[]=“。”;

uchar wendu[6];

uchar shidu[6];

/********************************************************

1ms延时函数

********************************************************/

void delay(int z)

{

int x,y;

for(x=z;x》0;x--)

for(y=125;y》0;y--);

}

/********************************************************

50us延时函数

********************************************************/

void delay_50us(uint t)

{

uint j;

for(;t》0;t--)

for(j=19;j》0;j--);

}

/********************************************************

50ms延时函数

********************************************************/

void delay_50ms(uint t)

{

uint j;

for(;t》0;t--)

for(j=6245;j》0;j--);

}

/********************************************************

液晶写指令

********************************************************/

void write_12864com(uchar com)

{

lcdrs=0;

lcdrw=0;

delay_50us(1);

P0=com;

lcden=1;

delay_50us(10);

lcden=0;

delay_50us(2);

}

/********************************************************

12864液晶写数据

********************************************************/

void write_dat(uchar dat)

{

lcdrs=1;

lcdrw=0;

delay_50us(1);

P0=dat;

lcden=1;

delay_50us(10);

lcden=0;

delay_50us(2);

}

/********************************************************

12864液晶初始化

********************************************************/

void init12864lcd(void)

{

delay_50ms(2);

write_12864com(0x30);

delay_50us(4);

write_12864com(0x30);

delay_50us(4);

write_12864com(0x0f);

delay_50us(4);

write_12864com(0x01);

delay_50us(240);

write_12864com(0x06);

delay_50us(10);

write_12864com(0x0c);

delay_50us(10);

}

/********************************************************

12864液晶显示函数

********************************************************/

void display1(void)

{

uchar i;

write_12864com(0x80);

for(i=0;i《18;i++)

{

write_dat(table2[i]);

delay_50us(1);

}

}

/********************************************************

12864液晶显示函数

********************************************************/

void display2(void)

{

uchar i;

write_12864com(0x90);

for(i=0;i《18;i++)

{

write_dat(table3[i]);

delay_50us(1);

}

}

/********************************************************

12864液晶显示函数

********************************************************/

void display3(void)

{

uchar i;

write_12864com(0x88);

for(i=0;i《8;i++)

{

write_dat(table4[i]);

delay_50us(1);

}

}

/********************************************************

12864液晶显示函数

********************************************************/

void displaywendu(void)

{

uchar i;

write_12864com(0x94);

for(i=0;i《3;i++)

{

write_dat(wendu[i]);

delay_50us(1);

}

for(i=0;i《1;i++)

{

write_dat(table5[i]);

delay_50us(1);

}

for(i=4;i《5;i++)

{

write_dat(wendu[i]);

delay_50us(1);

}

}

/********************************************************

12864液晶显示函数

********************************************************/

void displayshidu(void)

{

uchar i;

write_12864com(0x8C);

for(i=0;i《3;i++)

{

write_dat(shidu[i]);

delay_50us(1);

}

for(i=0;i《1;i++)

{

write_dat(table5[i]);

delay_50us(1);

}

for(i=4;i《5;i++)

{

write_dat(shidu[i]);

delay_50us(1);

}

}

/********************************************************

SHT11写字节程序

********************************************************/

char s_write_byte(unsigned char value)

{

unsigned char i,error=0;

for (i=0x80;i》0;i》》=1) //高位为1,循环右移

{

if (i&value) DATA=1; //和要发送的数相与,结果为发送的位

else DATA=0;

SCK=1;

_nop_();_nop_();_nop_(); //延时3us

SCK=0;

}

DATA=1; //释放数据线

SCK=1;

error=DATA; //检查应答信号,确认通讯正常

_nop_();_nop_();_nop_();

SCK=0;

DATA=1;

return error; //error=1 通讯错误

}

/********************************************************

SHT11读字节程序

********************************************************/

char s_read_byte(unsigned char ack)

{

unsigned char i,val=0;

DATA=1; //释放数据线

for(i=0x80;i》0;i》》=1) //高位为1,循环右移

{

SCK=1;

if(DATA) val=(val|i); //读一位数据线的值

SCK=0;

}

DATA=!ack; //如果是校验,读取完后结束通讯;

SCK=1;

_nop_();_nop_();_nop_(); //延时3us

SCK=0;

_nop_();_nop_();_nop_();

DATA=1; //释放数据线

return val;

}

/********************************************************

SHT11启动传输

********************************************************/

void s_transstart(void)

{

DATA=1; SCK=0; //准备

_nop_();

SCK=1;

_nop_();

DATA=0;

_nop_();

SCK=0;

_nop_();_nop_();_nop_();

SCK=1;

_nop_();

DATA=1;

_nop_();

SCK=0;

}

/********************************************************

SHT11连接复位

********************************************************/

void s_connectionreset(void)

{

unsigned char i;

DATA=1; SCK=0; //准备

for(i=0;i《9;i++) //DATA保持高,SCK时钟触发9次,发送启动传输,通迅即复位

{

SCK=1;

SCK=0;

}

s_transstart(); //启动传输

}

/********************************************************

SHT11温湿度检测

********************************************************/

char s_measure(unsigned char *p_value, unsigned char *p_checksum, unsigned char mode)

{

unsigned error=0;

unsigned int i;

s_transstart(); //启动传输

switch(mode) //选择发送命令

{

case TEMP : error+=s_write_byte(MEASURE_TEMP); break; //测量温度

case HUMI : error+=s_write_byte(MEASURE_HUMI); break; //测量湿度

default : break;

}

for (i=0;i《65535;i++) if(DATA==0) break; //等待测量结束

if(DATA) error+=1; // 如果长时间数据线没有拉低,说明测量错误

*(p_value) =s_read_byte(ACK); //读第一个字节,高字节 (MSB)

*(p_value+1)=s_read_byte(ACK); //读第二个字节,低字节 (LSB)

*p_checksum =s_read_byte(noACK); //read CRC校验

return error; // error=1 通讯错误

}

/********************************************************

SHT11温湿度值标度变换及温度补偿

********************************************************/

void calc_sth10(float *p_humidity ,float *p_temperature)

{

const float C1=-4.0; // 12位湿度精度 修正公式

const float C2=+0.0405; // 12位湿度精度 修正公式

const float C3=-0.0000028; // 12位湿度精度 修正公式

const float T1=+0.01; // 14位温度精度 5V条件 修正公式

const float T2=+0.00008; // 14位温度精度 5V条件 修正公式

float rh=*p_humidity; // rh: 12位 湿度

float t=*p_temperature; // t: 14位 温度

float rh_lin; // rh_lin: 湿度 linear值

float rh_true; // rh_true: 湿度 ture值

float t_C; // t_C : 温度 ℃

t_C=t*0.01 - 40; //补偿温度

rh_lin=C3*rh*rh + C2*rh + C1; //相对湿度非线性补偿

rh_true=(t_C-25)*(T1+T2*rh)+rh_lin; //相对湿度对于温度依赖性补偿

if(rh_true》100)rh_true=100; //湿度最大修正

if(rh_true《0.1)rh_true=0.1; //湿度最小修正

*p_temperature=t_C; //返回温度结果

*p_humidity=rh_true; //返回湿度结果

}

/********************************************************

主函数

********************************************************/

void main(void)

{

unsigned int temp,humi;

value humi_val,temp_val; //定义两个共同体,一个用于湿度,一个用于温度

unsigned char error; //用于检验是否出现错误

unsigned char checksum; //CRC

init12864lcd();

display1();

display2();

display3();

s_connectionreset(); //启动连接复位

while(1)

{

error=0; //初始化error=0,即没有错误

error+=s_measure((unsigned char*)&temp_val.i,&checksum,TEMP); //温度测量

error+=s_measure((unsigned char*)&humi_val.i,&checksum,HUMI); //湿度测量

if(error!=0) s_connectionreset(); ////如果发生错误,系统复位

else

{

humi_val.f=(float)humi_val.i; //转换为

temp_val.f=(float)temp_val.i; //转换为浮点数

calc_sth10(&humi_val.f,&temp_val.f); //修正相对湿度及温度

temp=temp_val.f*10;

humi=humi_val.f*10;

wendu[0]=temp/1000+‘0’; //温度百位

wendu[1]=temp%1000/100+‘0’; //温度十位

wendu[2]=temp%100/10+‘0’; //温度个位

wendu[3]=0x2E; //小数点

wendu[4]=temp%10+‘0’; //温度小数点后第一位

displaywendu();

shidu[0]=humi/1000+‘0’; //湿度百位

shidu[1]=humi%1000/100+‘0’; //湿度十位

shidu[2]=humi%100/10+‘0’; //湿度个位

shidu[3]=0x2E; //小数点

shidu[4]=humi%10+‘0’; //湿度小数点后第一位

displayshidu();

}

delay(800); //等待足够长的时间,以现行下一次转换

}

}


关键字:51单片机  SHT11 引用地址:使用51单片机实现SHT11温湿度传感器检测的程序和电路图

上一篇:分享一些单片机汇编语言常见的语法和程序错误
下一篇:51单片机定时器控制LED灯

推荐阅读最新更新时间:2024-10-31 01:55

在MCS-51单片机中对特殊功能寄存器的C51定义
在开始讲对C51单片机中特殊寄存器(SPR)的定义前,先简单介绍下我们在进行51单片机开发时经常看到的两个关键字 sbit”和 sfr“: sfr用于将一个单片机的特殊功能寄存器(specialfunctionregister)赋值给一个变量,这样在后面的程序中就可以中这个变量指引(referto)该寄存器 sbit与sfr用法类似,只是sbit是位操作,用于将某个sfr中具体位赋值给一个变量,这样后面程序就可用通过该变量为该位清0或置1。 接着我们以STC系列的51单片机为例简单的了解下单片机的特殊功能寄存器布局,如下: MCS-51单片机中,除了程序计数器PC和4组工作寄存器组外,其它所有的寄存器均为特殊功能寄
[单片机]
在MCS-<font color='red'>51单片机</font>中对特殊功能寄存器的C51定义
基于C51单片机的多气体检测系统设计
  气体传感器是一种能将气体种类及其与浓度有关的信息转换成电气信号的装置。根据这些电气信号的强弱就可以获得与待测气体在环境中存在情况有关的信息,从而可以进行检测、监控、报警。因此由气体传感器与模式识别系统构成的智能化气味识别仪器有着广泛的应用领域,如食品工业、化学工业、环境监测、医学诊断、安全检查等,越来越受到广泛关注。   传统的气体检测大多采用单气体检测方式, 即每测量一种气体需要一种测量仪表。用一种仪器能够进行多种气体的检测和识别是气体检测仪的发展趋势,而本设计采用酒精传感器、甲烷传感器、一氧化碳传感器等多种气体传感器组成传感器阵列,通过传感器阵列能把气体中的特定成分检测出来,并将其转化为电信号,然后采用ADC0809 将
[单片机]
基于C<font color='red'>51单片机</font>的多气体<font color='red'>检测</font>系统设计
51单片机内存问题
关于 51单片机内存问题,一直是个疑惑大家的问题,因为51单片机是个很另类的单片机。 下面我给楼主讲解一下: 51单片机之所以另类,是因为,他寻址内存的空间,不是靠总线,是用指令的方式。 51单片机有以下几个内存模块组成: 1】ROM或者Flash,叫程序存储区,你写的程序是存在这里面的,上电后从这里面执行。 程序存储区也分为片内和片外,一般来说,现在的51很多已经做到了64K,所以很少有外扩 片外Flash或者片外的Rom了,Flash或者Rom不管是片内还是片外的,只能用来定义常量,是用code来修饰,也就是说,用code来修饰的东西,在程序运行过程中,不能修改; 2】RAM有------内部RAM的低128位(00-7F),
[单片机]
51单片机(十三)—— 看门狗功能测试
一、看门狗介绍 在由单片机构成的系统中,由于单片机的工作有可能受到外界电磁场的干扰,造成程序的跑飞,从而陷入死循环,程序的正常运行被打断,单片机控制的系统便无法继续工作,这样会造成整个系统陷入停滞状态,发生不可预测的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片,俗称“看门狗(Watch Dog)”。 加入看门狗电路的目的是使单片机可以在无人状态下实现连续工作,其工作过程为:看门狗芯片和单片机的一个I/O引脚相连,该I/O引脚通过单片机的程序控制,使它定时地往看门狗芯片的这个引脚上送入高电平(或低电平),这一程序语句是分散地放在单片机其它控制语句中间的,一旦单
[单片机]
<font color='red'>51单片机</font>(十三)—— 看门狗功能测试
89c51单片机编程环境布置
第一步,使用Professional 的isis7连接模拟电路 第二步,根据电路引脚的使用情况,用keil uVision4编写调试源程序 第三步,代码调试无误,回到isis7中,将代码下载到模拟硬件中。运行查看。 具体做法:右击单片机AT89c51,选择最底下的Add/Remove source files,出现下图: 其中Code Generation Tool从下拉列表选择ASEM51,source code filename调整目录选择自己的源码,点击ok即可完成软件下载到硬件。 第四步:运行,查看效果。单击左下角三角图标:
[单片机]
51单片机六个常见问题解析
一,为何51单片机爱用11.0592MHZ晶振? 其一:由于它能够精确地划分红时钟频率,与UART(通用异步接纳器/发送器)量常见的波特率有关。特别是较高的波特率(19600,19200),不论多么古怪的值,这些晶振都是精确,常被运用的。 其二:用11.0592晶振的缘由是51单片机的定时器致使的。用51单片机的定时器做波特率发生器时,假如用11.0592Mhz的晶振,根据公式算下来需求定时器设置的值都是整数;假如用12Mhz晶振,则波特率都是有误差的,比如9600,用定时器取0XFD,实践波特率10000,通常波特率误差在4%摆布都是能够的,所以也还能用STC90C516 晶振12M 波特率9600 ,倍数时误差率6.99%
[单片机]
一种基于C8051单片机的SPWM波形实现方案
1 引言   正弦脉宽调制(SPWM)技术已在交流调速、直流输电、变频电源等领域得到广泛应用,为了提高整个系统的控制效果,高性能SPWM脉冲形成技术一直是人们不断探索的问题。采用模拟电路和数字电路等硬件电路来产生SPWM波形是一种切实可行的方法,但是这种实现方法控制电路复杂、抗干扰能力差、实时调节较困难。近年来,人们提出了由单片机、DSP等微控制器来实现SPWM波形的数字控制方法 ,由于微控制器内部集成了很多控制电路,比如定时器、PWM电路、可编程计数器阵列等,所以使得这种实现SPWM的方法具有控制电路简单、运行速度快、控制精度高、抗干扰能力强等优点。本文介绍了一种利用C8051单片机实现输出频率可变SPWM波形的方法,并将由C8
[电源管理]
一种基于C80<font color='red'>51单片机</font>的SPWM波形实现方案
基于SHT11温湿度远程监控系统设计
温湿度控制在日常生活和工农业生产中的运用非常广泛,本系统采用SHT11温湿度复合传感器是瑞士Sensirion公司推出的一款含有已校准数字信号输出,其外形尺寸仅为7.65x5.08x23.5 mm,体积与火柴头相近,SHT11采用串行接口,它的分辨率可以根据对现场的采集速率而进行调整,一般情况下默认的测量分辨率分别为14 bit(温度)、12 bit(湿度),如果在高速采集中就可分别降至12 bit和8 bit,对温度的量程范围:-40~123.8℃,湿度的量程范围:0~100%RH,采用该芯片使本系统构成更趋于简单化同时本系统还使用单片机控制TC35(廉价的GSM模块)发送、接收GSM短信实现温湿度的远程监控。 1 控制原理
[单片机]
基于<font color='red'>SHT11</font><font color='red'>温湿度</font>远程监控系统设计
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved