助听器的基本结构---放大器

发布者:superstar11最新更新时间:2008-07-13 来源: 半导体应用网关键字:电压  电流  二极管  滤波  电阻  反馈 手机看文章 扫描二维码
随时随地手机看文章

  一、放大器的作用由于麦克风已经把声音转换成电压和电流,放大器的主要作用是把小的电信号变成一个大的电信号。放大器有三种放大方式:第一,电压放大,电流不变;第二,电流放大,电压不变;第三,电压和电流都放大。这三种方式都将电信号的能量放大了,这种能量来自于助听器电池。放大器配合滤波器性能,可使其具有助听器所需的频率特性。

  二、放大器的构造

  用于放大的基本元件是晶体管。为了获得更好的放大性能,放大器采用多个晶体管、二极管、电阻、电容等组成的集成电路。现在的助听器放大器、滤波器均已制成可直接焊接的芯片、芯片由焊盘、放大电路板、封装层组成。如图2-14所示。部分放大器、滤波器电阻、电容的容量较大,无法制成集成元件,往往将离散元件焊接在芯片表面。这就要求更高的芯片封装及焊接技术。由于电子元件易被静电击穿,芯片在设计时,应具有去静电电路。

  三、滤波器

  滤波器用于改变助听器的频率响应,分为有源滤波器和无源滤波器两种。无源滤波器仅由电阻、电容组成;有源滤波器中除无源滤波器外还加入了放大器,它比无源滤波器具有更宽的频率控制范围和更灵活的调节功能。

  滤波器按对信号频率的过滤功能分低通滤波器、高通滤波器和带通滤波器。低通滤波器只允许低频信号通过,衰减高频;高通滤波器只允许高频信号通过,衰减低频;带通滤波器由低通滤波器和高通滤波器组合而成,衰减低频和高频,只允许特定频带的信号通过。

  滤波器可通过截止频率和滤波斜率(阶数)来描述。如图2-15所示。图中竖坐标“0”起始的线表示低通滤波器的频响,另一根线表示高通滤波器的频响。截止频率由电阻、电容决定,一般通过调节音调电位器实现。滤波斜率由每倍频程下降的分贝数来表示。

  多通道助听器一般每个通道分别有一个滤波器,通过调节各自滤波器以及相邻两个滤波器的交叉频率可改变助听器的频率响应。

  对具有压缩线路的助听器,滤波器处于压缩反馈环路之前、之后、之中会对助听器的频率响应产生不同的影响,这将在第五章第二节详细讨论。多数滤波器设置在麦克风与放大器之间。

  四、助听器的最大输出控制

  (一)最大输出控制原则

  为了避免大声时助听器输出幅度过高超过听障者的不适阈,从而引起听障者的不适及听力损伤,助听器的最大输出幅度必须加以控制。控制原则就是将最大输出控制在接近听障者的不适阈处。目前的助听器均有最大输出控制功能。

  (二)最大输出控制的类型

  1.削峰电路(PC)  在线性放大线路(即增益不随输入声压级的变化而变化)中,最大输出控制主要采用削峰电路。削峰电路是最简单的输出限幅方式,就是把输出信号中超过限度的峰值部分削去,如图2-16所示。

  图2-17所示的是削峰电路在不同输入声压级下对应的输出曲线图。从图中可以看出在小输入声压级时,助听器为线性放大;在大输入声压极时,才产生削峰。削峰时输出幅度不变。现在部分助听器使用软削峰技术,它与以前的削峰技术(称为硬削峰)区别在于,软削峰在削峰拐点附近失真较小,当输入信号幅度超过拐点几个分贝以上时,它与硬削峰失真相近。

  2.压缩放大电路  由于削峰电路不可避免地引起信号丢失,因此需要一种既能达到限幅目的的又不丢失信号的限幅方式。

  压缩放大电路的处理方式是小输入声压级时,助听器为线性放大;在大输入声压级时,增益逐渐减小,最大输出不会超过某个限度。也就是将大范围的输入信号压缩至一个小范围的输出。它广泛应用于非线性放大线路(即增益随输入声压级的变化而变化)中。值得注意的是,这时的输出信号与输入信号形状上有所改变。如图2-18、图2-19所示。

  对于压缩放大,将在第五章第二节助听器线路中详细讨论。

  五、放大器的失真

  1.谐波失真  当削峰发生时,由于输出信号已不再是正弦波,它包含了输入信号中所没有的频谱成分,从而产生了失真。当输入信号是频率为f的正弦波时,它的频谱为一根单一垂线(基频)。当该信号被削峰时,输出信号中除基频成分外,还有2f成分(二次谐波)、3f成分(三次谐波)……nf成分(n次谐波)。这种失真称为谐波失真,这些谐波成分成为失真产物。

  如果削峰是对称的(输出的正反向峰值均被削去),失真产物仅发生在输入频率的奇数谐波。如果削峰是不对称的(只削去输出的正向峰值),失真产物还发生在偶数谐波。

  所有谐波成分能量和与总能量之比的平方根乘以百分之百,称为总谐波失真。由于谐波成分的主要能量集中在二次谐波和三次谐波上,因此常以二次谐波和三次谐波所产生的失真之和代替总谐波失真。   

  2.互调失真  当一个更复杂的信号被削峰时,失真产物发生在所有输入信号频率的谐波上,以及与输入信号相结合的频率上。如果输入两个音调,频率f1和频率f2,失真成分会发生在2f1,3f1,2f2,3f2,f2-f1,f1+f2,2f2-f1,2f1-f2等。由于失真产物来自所有输入成分的调制,这种失真称为互调失真,虽然引起失真的机制与谐波失真完全一样。

  由于互调失真在助听器中表现不明显,因而一般不作测量。

  虽然谐波失真和互调失真主要由削峰产生,但也会由压缩放大引起,不过产生的失真较小。

  3.失真对言语质量的影响  谐波失真进一步降低了信噪比,导致了言语可懂度的下降。

  总谐波失真是衡量助听器音质的重要指标。助听器厂家一般规定总谐波失真不大于15%,小于3%是助听器的理想目标。3%的失真相当于二次谐波分量的能量比基波小30dB,即使是听力正常人也较难分辨;10%的失真相当于二次谐波分量比信号声压级小20dB,听力损失较重者就难以分辨。

  由于规定的测量声压级为70dB,因而此时测得的失真数值较小,并不代表助听器在大输入声压极时失真也小。因为当输入信号在中等及中等以下时,放大器线性放大,这时无失真产生。当输入信号不太大时,信号被削峰较少,产生的谐波失真并不大,对言语的理解能力也影响不大。但当输入信号较大时,由于削峰程度加大,谐波失真会很大,对言语的理解能力也大为下降。规定的测量声压级为70dB主要是基于言语交流时听到的声强一般为60~70dB。但是助听器用户听自己的声音特别是打电话时,由于声源距离麦克风较近,助听器的输入声强可能有80~90dB,这时助听器的失真就有可能较大。经常有助听器虽然测出的失真很小,但听起来却声音沙哑,就是这个原因。因此衡量助听器的音质好坏,不能只看输入70dB声压级时的失真。

  最后,尽管削峰是在放大器的性能中讨论的,但助听器授话器也可以对信号产生削峰。这主要是由于受到授话器功率的限制。

关键字:电压  电流  二极管  滤波  电阻  反馈 引用地址:助听器的基本结构---放大器

上一篇:血压计解决方案
下一篇:助听器

推荐阅读最新更新时间:2024-03-16 11:34

一种新颖的完全断续箝位电流模式功率因数校正电路
摘要:提供了一种新颖的宽输入范围、完全DCM、箝位电流工作模式的Boost功率因数校正电路控制方法。该控制方法不存在Boost电路中二极管的反向恢复,从而提高了整个电路的效率,同时,该方案获得了低的总谐波畸变(THD)和较高的功率因数(PF)。该方案适合于中低功率场合的应用。给出了具体的理论分析和一个100W的电路实验数据。 关键词:电流箝位升压;功率因数校正;完全断续电流模式 引言 在以往的有源功率因数校正电路拓扑中,一个带乘法器的控制芯片不可避免。为了降低成本,一种电流箝位(ClampedCurrentBoost,CCB)的控制方法可以简化电路。在这种电路中,每半个周期中开关电流峰值被箝位至一个参考值。输入电流的波形跟随输入电压
[电源管理]
技术分享:一款低压大电流开关电源的电路设计
引言 为了以更低的功耗获得更高的速度和更佳的性能,要求 电源 电压越来越低,瞬态性能指标越来越高,因此对 开关电源 提出了越来越高的要求。用原有的电路拓扑及整流方式已不能满足现在的要求,为了适应IC芯片发展的需要,人们开始研究新的电路拓扑。因为输出电压很低,所以,同步整流自然成为这种低压大电流电源的必然选择,考滤到产品的复杂程度及产品可靠性,同步整流一般选择自驱动同步整流,能与自驱动同步整流电路较好结合的拓扑大致有三种:有源箝位正激变换器;互补控制半桥变换器;两级结构变换器。与两级结构变换器相比,有源箝位变换器和互补控制半桥变换器所用器件少,更具有吸引力。这两种变换器拓扑容易实现软开关,工作频率可以更高;变压器的磁芯可以双向磁化
[电源管理]
技术分享:一款低压大<font color='red'>电流</font>开关电源的电路设计
AT89C52+ADC0809构成的量程0-5V电压
这是一款用ADC0809作为A/D转换、显示用四位共阴数码管、单片机为AT89C52构成的量程的0-5V电压测量表 电子小制作 。这个ADC0809(在proteus里是用ADC0808来仿真,和ADC0809是一样的)基本上能够做出一个比较正确的电压表,量程是0-5V。这里只是做了一个仿真,来验证程序的正确性,这个电子小制作没有做出实物,对这个单片机制作感兴趣的爱好都,可以进行实物的制作。做这个仿真最要注意的问题是ADC0808(ADC0809)的输出脚千万不能接反,实际制作中有很多爱好者都是接反的,造成得不到正确的仿真。下面是:AT89C52+ADC0809构成的量程0-5V电压表电子小制作源程序。电子乐屋整理。 #i
[单片机]
AT89C52+ADC0809构成的量程0-5V<font color='red'>电压</font>表
Bourns全新双扼流滤波电感器问市,兼具电流补偿能力
美国柏恩Bourns全球知名电子组件领导制造供货商,宣布推出全新DR334A线路滤波器系列。此款电流补偿双扼流滤波电感器具有比标准讯号线共模扼流圈更高的电流能力,以及高杂散电感和差模噪声抑制能力。这些功能使DR334A型系列成为消费、工业和其他市场电力线应用、或信号线传输功率应用的理想线路滤波器解决方案。 Bourns® DR334A全新型号系列具有双绕线配置,可达到较高的共模阻抗,扇形绕线配置则可在高频时达到较高的差模阻抗。DR334A型线路滤波器具紧凑、薄型尺寸(高3.6 mm)特色,且具有11 µH至4700 µH的宽泛电感等级,可让设计人员设置最适合其应用的滤波器曲线。 Bourns® DR334A型系列符合
[传感器]
Bourns全新双扼流<font color='red'>滤波</font>电感器问市,兼具<font color='red'>电流</font>补偿能力
电压采样保持电路图
图中所示是用SF357运放组成的电压采样保持电路.这种电压采样保持电路可以方便地观察任一时间内的被测瞬间电压值. 在测试电压时,只需将其输入端跨接于被测电压的两端,接着
[电源管理]
<font color='red'>电压</font>采样保持电路图
电流LED应用的线性恒流稳压方案
      凭借着节能、长使用寿命及色彩组合丰富等优势,LED成为增速最快的半导体领域之一,近年来的年复合增长率(CAGR)高达20%,预计2012年全球LED市场总值更将达114亿美元,前景非常可观。       市场上典型的LED驱动器包括两类,即线性驱动器和开关驱动器;进一步细分,则有三种,分别是开关稳压器、线性稳压器和电阻型驱动器。这三种驱动器分别适合不同等级的电流应用,见图1。如电流大于500 mA的大电流应用采用开关稳压器,因为线性驱动器限于自身结构原因,无法提供这样大的电流;而在电流低于200 mA的低电流应用中,通常采用线性稳压器及电阻型驱动器;而在200至500 mA的中等电流应用中,既可以采用线性稳压器,
[电源管理]
低<font color='red'>电流</font>LED应用的线性恒流稳压方案
数字滤波抗干扰技术在A/D转换中的应用
1引言 仪器仪表设备在现场测试过程中,由于生产变量的测试数据对生产过程具有重要的意义,因此对各种物理量测试数据精度要求是比较高的。 在前向测试通道上采用的抗干扰措施中,滤波方法是抑制干扰的一种有效途径。在工业现场中,可利用硬件滤波器电路或软件滤波器算法提高测试数据的准确性。硬件滤波措施是使用较多的一种方法,技术比较成熟,但同时也增加了设备,提高了成本,而且电子设备的增加有可能带来新的干扰源。而采用软件滤波算法不需增加硬件设备,可靠性高,功能多样,使用灵活,具有许多硬件滤波措施所不具备的优点,当然它需要占一定的运行时间。 2常用的几种软件滤波方法 (1)中值滤波法:即每次 取N个AD值,去除其中的最大值和最小值而取剩余的N
[单片机]
数字<font color='red'>滤波</font>抗干扰技术在A/D转换中的应用
输入浪涌电流抑制模块在AC/DC变换器的应用
  1 上电浪涌电流   目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。   浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved