放大器AD604及其在医用超声系统中的应用

发布者:独行侠客最新更新时间:2008-08-08 来源: 国外电子元器件关键字:增益  噪声  电流  电压  控制  线性 手机看文章 扫描二维码
随时随地手机看文章

 

  AD604是Analog Devices(AD公司)的产品。和同类产品相比,AD604具有超低噪声、高精度、增益连续可调,且增益的分贝(dB)数和增益的控制电压成正比的特点。而医用超声仪器的时间增益控制(TGC)电路要求其增益与控制电压呈指数关系,也就是增益的分贝(dB)数和控制电压成线性关系。因此,在这方面, AD604是一个理想的超声TGC放大器,它能有效减小送入A/D转换器的信号动态范围。AD604的主要特点如下:

  ·具有超低的输入噪声,在最大增益时,其电压和电流噪声分别为
  ·带宽为40MHz(-3dB);
  ·具有两个独立的增益通道,并且增益的分贝(dB)数和增益控制电压成正比;
  ·每个通道的增益均可程控。在前置放大14 dB时,增益可在0~+48dB之间调整;而在前置放大20dB时,增益在+6~+54dB之间可调;
  ·具有300kΩ输入电阻;
  ·可变增益范围为20~40dB/V;
  ·在温度和供电电压发生变化时,其增益非常稳定;
  ·可进行单端单极性增益控制;
  ·当增益超出最低端极限时,电源会自动断电;
  ·可直接驱动A/D转换器。
  
  1引脚功能

  AD604采用24脚封装,并有DIP、SSOP和SOIC三种封装形式,其管脚排列如图1所示。各引脚的功能说明如下:

  PAI1/PAI2:前置放大器正输入;
  PAO1/PAO2:前置放大器输出;
  FBK1/FBK2:前置放大器反馈端;
  COM1/COM2:信号地;当其接正电源时,前置放大器通道被关闭;
  -DSX1/-DSX2:微分衰减器信号输入负端;
  +DSX1/+DSX2:微分衰减器信号输入正端;
  VGN1/VGN2:增益控制输入端以及电源关闭端。接地时,该衰减通道被关闭;否则随着正电压的增加,增益将逐渐增加;
  VREF:两个通道的增益控制档。当其电压为+2.5V时,增益为20dB/V,而当电压为+1.67V时,增益为30dB/V;
  VOCM:输出信号的共模信号控制端。用以确定这部分电路中直流信号的中值电压;
  OUT1/OUT2:信号输出端;
  VPOS/VNEG:接正/负电源;
  GND1/GND2:接地端。


  2内部结构及工作原理

  AD604是一个双通道可变增益放大器。它的每一个通道都是由一个低噪声前置放大器和一个可变增益放大器(XAMP)组成。同时XAMP又由一个高精度受控微分衰减器、一个增益控制单元、一个固定增益反馈放大器及一个由分立元件R3、 R4组成的VOCM共模电压控制单元组成。其原理如图2所示。AD604的每一个通道都可提供一个范围为48dB的可变增益。

  2.1前置放大器

  AD604的每一个通道都有一个高性能的前置放大器,通过反馈回路上的一个外部电阻可将放大倍数控制在+14dB~+20dB。前置放大器的内部电路如图3所示。其中R5、R6、R7是前置放大器的增益控制电阻。具体增益的大小可通过FBK1和PAO1之间的电阻来确定。

  2.2微分梯形网络(衰减器)

  前置放大的输出可作为指数放大器的微分输入以获得分贝线性的增益。这个衰减器是由一个7阶的R-1.5R梯形网络实现的。每一阶的衰减为6.908dB,因此最后总的衰减为48.356dB。

  2.3增益控制

  AD604的线性增益控制是通过VGN端实现的。用户可将自己需要的变化电压输入给VGN以获得一个变化的增益。VGN端的输入电阻是2MΩ。

  为了适应不同用户对增益的需要,AD604还提供了一个增益控制档。通过调节VREF的输入电压可以调节增益的档次:VREF电压从2.5~1. 25V分别对应20~40dB/V的增益档。对于20dB/V增益档,VGN的调节范围为0.2~1.2V;而对于40dB/V增益档,VGN的调节范围为0.4~2.4V。当前置放大为14dB时,可以按以下公式来计算增益数:

  2.4固定增益放大器

  这一级放大实际上就是由一个运算放大器组成的反馈电路。反馈放大器输出中的一路可作为反馈输入;另一路则作为微分器的输入(参见图2)。

  这部分放大器总的增益为:G总=VOUT/VATTEN=[(R1+R2)/R2]gm1/gm2。其中,VOUT是输出电压,VATTEN是衰减器的读出信号,(R1+R2)/R2=42,gm1/gm2=1.25。因此,总的增益为52.5(即34.4dB)。

  3 AD604在医用超声设备中的应用

  当医用超声仪器发出的超声波在人体内传播时,其能量将被人体组织吸收。随着探测深度的增加,超声波的能量将逐渐衰减。为了使不同深度组织界面的回波幅值相同,应将不同深度下的回波信号进行不同程度的衰减放大,以实现声程补偿,也就是需要接收机的增益随扫描时间的增加而增加,因为从较深部位声界面反射的回声信号的放大倍数较大,而距换能器较近的反射信号,也就是在时间上较早到达的回波信号则放大倍数较小。在超声波诊断类仪器中,一般使用TGC(Time Gain Compensation)深度时间增益补偿电路,即用一定的电压曲线来控制放大器的增益,以使得不同深度下的超声回波能够获得不同的放大倍数,从而起到补偿作用。


  图4所示是一个用AD604驱动AD9050(10-bit,40MSPS的ADC)的医用超声增益补偿电路。当AD7226 D/A转换器与其它微处理器接口时,应将读入的放大倍数数字量转换为模拟量,然后把这个模拟量作为AD604的增益控制信号输入(即与其VGN端相连),从而实现增益的控制。经过AD604衰减补偿的信号,再经过滤波器及AD9631(低畸变、低噪声、高速运算放大器)后即可成为ADC的有效输入。运算放大器的输出和ADC的自偏输入在进行交流耦合后,即可由AD9050 A/D转换器进行采样速率为40MSPS的模数转换。

  该方案解决了医用超声软组织测量过程中由声程导致的回波信号的非线性补偿问题。与传统的分立元件电路相比,该方案具有电路简单、TGC控制信号稳定可靠以及调节灵活等特点,能准确地补偿超声波在人体内的衰减,从而为控制系统实现高速数字化提供一个新的可靠方法。

  参考文献

  1.Analog Devices.AD604 Data Sheet

  2.万明习,卞正中,程敬之.医学超声学.西安交通大学出版社,1992.10

  3.关立勋,雷纪胜.超声诊断仪原理与维护。人民卫生出版社,1983.12

  4.Chebli,R.;Kassem,A.;Sawan,M.'Integrated front-end preamplifier dedicated to ultrasonic receivers'Electronics,Circuits and Systems,2001. ICECS2001.The 8th IEEEInternational Conference on,2001,Page(s):1103-1106 vol.3

关键字:增益  噪声  电流  电压  控制  线性 引用地址:放大器AD604及其在医用超声系统中的应用

上一篇:揭秘未来医疗技术:游走于血液的微型机器人
下一篇:英国揭开首个有生物脑机器人的神秘面纱

推荐阅读最新更新时间:2024-03-16 11:34

电压精度和温度对镍氢电池组的影响
    近年来,煤矿用后备电源技术发展迅速,各种类型的电池得到广泛应用,其中镍氢电池由于容量高、无记忆效应和循环寿命长、无污染等优点在煤矿产品中已得到广泛使用。     煤矿用电子产品在使用镍氢电池上大多集中于提高放电效率、降低使用成本等方面,而忽略了充电电压精度和应用环境温度对镍氢电池在使用效率上的影响。镍氢电池组从安全角度出发,必须是一个由多节单体电池串联和相关控制电路组成的系统 ,其中任何一只单节电池的损坏必将影响整个电池组。因此研究分析镍氢电池组的充电电压精度和应用环境温度成为一个不可避免的问题。本文正是基于这一原因,分析充电电压精度、环境温度对镍氢电池的影响,具有很强的适用意义。 1 电池工作原理     镍氢电池正极的
[电源管理]
<font color='red'>电压</font>精度和温度对镍氢电池组的影响
赛普拉斯和Icron宣布USB3.0控制器和有源电缆延长器实现互操作
采用Icron的ExtremeUSB®技术,成功地将赛普拉斯的EZ-USB® USB 3.0外设控制器的数据传输距离从3米延长到15米,传递5-Gbps的数据吞吐量。 USB控制器的领导者赛普拉斯半导体公司和USB及视频扩展技术领先者Icron技术公司联合宣布,成功地完成了赛普拉斯EZ-USB FX3™ USB 3.0 外设控制器、 EZ-USB CX3™ 相机控制器及 Icron USB 3.0 Spectra™ 3001-15 有源铜质延长线缆之间的互操作性测试。 USB3.0的5 Gbps带宽可实现高分辨率、高帧频的实时成像,无需会导致图像质量下降的压缩过程,因而在机器视觉和工业相机领域越来越受欢迎。但目前U
[嵌入式]
混合动力车(HEV)系统及控制方式剖析
  在2009年日本国内新车销量中,丰田“普锐斯(Prius)”以超过20万辆的业绩高居榜首,如今HEV已完全成为大众型汽车。HEV通过充分利用马达,大大改善了发动机汽车起动及减速时的能耗和尾气排放等缺点,同时还解决了EV存在的行驶距离和充电时间等问题。本文将对HEV系统的种类及特点进行介绍。   混合动力车(HEV)系统完美融合了发动机汽车和电动汽车(EV)的技术,对EV采用的马达及电池技术进行了充分利用。EV尽管从汽车黎明期就已出现,并在1900年以前达到了实用水平,但迄今为止一直未能实现全面普及。   在第二次世界大战后的汽油紧缺时期,EV作为替代能源汽车开始在日本上市。1949年日本国内EV产量达到3299辆,占到当时
[汽车电子]
混合动力车(HEV)系统及<font color='red'>控制</font>方式剖析
车身控制模块设计要求及解决方案
    随着人们对汽车的操控性及舒适性需求不断升高,汽车车身中的电子设备越来越多,如电动后视镜、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。   图1:典型车身控制模块(BCM)的系统架构 电源要求及方案选择     典型车身控制模块(BCM)设计重要的一步是确定电源要求,以及选择合适的电源方案。一般而言,BCM要求的输入电压在-0.5 V至32 V之间,输出电压为5 V或3.3 V。       值得一提的是,汽车内的用电设备越来越多,如果电池直接供电的设备静态电流不够低,而汽车连续停泊较长时间,车内蓄电池可能因为过度放电而使汽车无法重新启动,故BCM设计需要考虑静态电流。此外,汽车应用中可能会常常面对高温环境,
[电源管理]
车身<font color='red'>控制</font>模块设计要求及解决方案
利用数字电位器实现按键保持控制
概述 利用微 控制 器,可以编写一段程序抑制输入 控制 信号的抖动,延长 开关 关闭之前的延时可以防止误操作。但是,使用微处理器实现良好的用户控制接口时需要冗长的编程设计和验证过程。本文利用数字电位器设计了一个简便的硬件方案,能够保证在必要时对系统进行调整操作。 图1. 本设计采用一个扩展延时的手动复位器件和一个32抽头非易失数字电位器实现按键保持开关,用于系统调整操作。 按键保持控制的实现 图1为本文设计的原理图,用户可以通过友好的接口实现增/减控制。设计中,选用一个扩展延时的手动复位器件(U1, MAX6343)避免按键误操作的影响,选用32抽头非易失数字电位器(U2, MAX5471)对VADJ进行增/减控制。VADJ可
[模拟电子]
利用数字电位器实现按键保持<font color='red'>控制</font>
准谐振软开关控制器IRIS4015的设计及应用
摘要:IRIS4015是一款专用准谐振软开关控制器,该芯片功能齐全,使用外围元件少,并具有完善的保护电路。文中详细介绍了该芯片的特点、功能,给出了其典型应用电路。 关键词:准谐振;软开关;反激变换器;IRIS4015 1 概述 IRIS4015是将MOSFET和开关电源控制器封装在一起的组合集成电路,主要应用于反激式准谐振变换器。该器件采用5脚SIP或SMD封装,适用于各类高低压开关电源。该器件的静态工作电流很低(100μA),具有内部软启动、温度补偿的逐脉冲过流保护OCP、过压锁定保护(OVP)和过热关断保护(TSD)等功能。 2 引脚功能 IRIS4015的管脚排列如图1所示。各引脚的功能如表1所列。
[电源管理]
基于DSP+FPGA多视频通道的切换控制
随着计算机和数字图像处理技术的飞速发展,视频监控技术应用广泛。传统的视频监控系统都是用单一摄像头对某一固定场景进行监控,不仅视频的视野范围有限,而且不能对同一个物体的不同方位进行监控。这里提出了一种多通道视频监控系统,通过对不同视频通道稳定、可靠地切换控制,实现监控不同场景。该系统不仅弥补了传统监控视频范围有限的不足,而且提高了监控资源的利用率,降低了监控 成本。 1 系统硬件结构 采用DSP+FPGA的硬件结构方案,利用DSP和FPGA控制MAX4312选通所需要的视频通道,从而达到在多路视频通道间进行切换的目的。系统结构框图如图1所示。   1.1 控制器件的选型 根据实际需要,DSP采用ADI公司推出的Bl
[嵌入式]
安全高效“双”提升,高创运动控制助力美的空调自动化水平再升级
前言 在我国大力实施智能制造工程的当下,制造企业纷纷加大了在信息化、自动化领域的投入,不断提升制造全生命周期的自动化水平,从而实现强质、降本和增效。如家电行业作为我国高端化制造的一张“名片”,正以不断创新、突破与追求卓越的技术与产品,引领全球产业发展。 作为全球空调制冷行业的佼佼者,美的空调不断深化智能制造,以更高的自动化水平、更高的生产效率满足市场需求,并在高创运动控制公司的助力下,其顺德工厂“空调内机自动安检”工站正式启用,解决空调行业总装过程中“触电”风险,进一步突破空调总装效率的“天花板”。 效率低、有风险?空调总装关键岗位亟待自动化升级 在空调的生产过程中,“总装线”是产品投入市场前的最后一步,也
[工业控制]
安全高效“双”提升,高创运动<font color='red'>控制</font>助力美的空调自动化水平再升级
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved