基于ZigBee可穿戴传感器的医疗监护系统设计

发布者:码字狂人最新更新时间:2015-09-11 来源: 《仪表技术》关键字:医疗 手机看文章 扫描二维码
随时随地手机看文章
    摘要:为了实现医疗设备的微型化、医疗监护的无线化,设计基于ZigBee 可穿戴传感器的医疗监护系统,它能够扩大病人的活动空间,减轻监护人员的工作强度,降低医疗费用。系统采用病区/监护中心两层结构,利用可穿戴传感器采集病人体温、脉搏等生理参数,数据经过处理后送至无线通信模块,最后由ZigBee 无线网络传输至监护中心。经过实验获得了病人生理参数,并与传统测量结果进行了对比。结果表明,系统稳定、可靠,很好地实现了病人生理参数的采集、传输和显示,符合设计要求。

  0 引言

  随着科学技术的发展,医疗卫生事业也取得了很大的进步,但目前医院的大部分医疗设备仍是基于传统的有线方式,接线繁杂、体积笨重,设备不便于移动,也不利于远程操作。同时,众多附于病人身体的设备探头,会造成病人的紧张情绪和心理负担,使得检测结果与真实情况存在一定偏差,影响病情的准确诊断。针对目前大部分医疗设备接线繁杂、功能单一的问题,本文设计了基于ZigBee 技术的可穿戴传感器监护系统,可穿戴传感器采集病人生理参数后,由ZigBee网络传输至监护中心,供工作人员进行进一步分析。

  1 ZigBee 简介

  ZigBee 是一种无线通信技术,其协议基于IEEE802.15.4 标准。该协议的结构从下到上分别为物理层( PHY) 、媒体访问控制层( MAC) 、传输层( TL) 、网络层( NWK) 和应用层( APL) 。目前,比较成熟的短距离无线通信技术,包括红外( IrDA) 、蓝牙( Bluetooth) 、Wi-Fi 等,都有自己的优点和应用领域。但针对医疗监护领域,ZigBee 有着无可代替性,其最大优势在于组网方便,可以实现多个网络节点管理,且网络规模极大,完全能够满足对若干病人进行监护和管理的要求。

  2 系统结构

  监护系统采用病区/监护中心两层结构,分布在病区的可穿戴传感器利用敏感元件采集病人生理参数,通过ZigBee 无线网络将数据发送给网络协调器,然后协调器将接收的数据传输至与之相连的上位机,系统架构见图1。

基于ZigBee可穿戴传感器的医疗监护系统

  图1 系统架构

  3 系统硬件设计

  系统硬件主要由无线传感器、网络协调器和上位机三个部分组成。无线传感器负责采集病人生理参数和数据发送; 网络协调器负责数据接收以及与上位机通信; 上位机负责数据显示。

  3.1 无线传感器

  如图2 所示,无线传感器主要包括敏感元件、数据处理模块、无线通信模块和电源模块。敏感元件负责采集病人生理参数; 数据处理模块负责对采集信号进行预处理,以符合单片机对输入信号的要求; 无线通信模块由51 单片机和射频芯片组成,负责整个传感器的任务分配与调度、数据整合与传输等。

基于ZigBee可穿戴传感器的医疗监护系统

  图2 无线传感器结构图

  3.1.1敏感元件与数据处理模块

  本系统集成了多种医疗监护传感器,可以测量体温、脉搏、血氧、血压等生理参数。限于篇幅,本文以脉搏为例,阐述整个系统的工作原理和设计方法。脉搏测量的基本原理是: 人体组织( 手指) 的半透明度会随着心脏的搏动而发生周期性的改变。当血液送到人体组织时,组织的半透明度减小; 当血液回流回心脏,组织的半透明度增大。因此,本系统的脉搏采集模块用红外发射二极管产生的红外线照射到手指,然后用另一侧的接收三极管来捕捉通过手指的光信号强度,接收管的反向电流与发射管的光照强度成线性关系,这样可以把光信号转换成电信号( 电流) 。

  信号采集使用的敏感元件是红外发射二极管IR928-6C 和与之配对的光敏三极管PT928-6C,具有低工作电压、高稳定性、高可靠性等特点。如图3 所示,通过电阻R16 将流过二极管的电流控制在20 mA左右,根据接收的光信号强度转换成电流( mA 级) ,通过负载电阻R17 转换成电压,人体脉搏大概是50 ~200 次/min,对应的频率约为0.83 ~ 3.34 Hz,属于低频信号,电路中采用R17 和C14 来完成滤除高频干扰的任务。

基于ZigBee可穿戴传感器的医疗监护系统

  图3 信号采集电路

  由于人体电信号具有阻抗高、信号弱、频率低等特点且处于严重的背景噪声之中,因此需要对采集转化的电信号进行预处理,这既为了保证信号最大程度的保真性,也方便后续进一步的数据处理。

  如图4 所示,数据处理电路包括信号滤波放大和整形两个环节。

基于ZigBee可穿戴传感器的医疗监护系统

  图4 数据处理电路

  滤波放大环节中,首先使用C15、C16 背靠背串联组成的双极性耦合电容构成一个简单的光电隔离电路,实现对于外部干扰光线的隔离并设计了由LM324A、R18、C17 组成的低通滤波器,截止频率约为基于ZigBee可穿戴传感器的医疗监护系统,可进一步去除高频干扰信号。由于采集转化的脉搏电信号( 电压) 比较小,一般在mV 级,通过R18 和R23 构成的放大器把采集的脉搏信号放大200 倍左右,已达到V 级。

  整形环节中,信号通过比较器LM324B 将正弦波转换成方波,利用R30 电位器可以实现将比较器的阈值调定在系统工作电压范围内。接下来,从LM324B 的引脚输出的方波信号经C19、R25 构成的微分电路处理成为正负相间的尖脉冲。LM324D 提供参考电压,再经过LM324C 之后就变成系统所需的标准脉搏脉冲信号了。最后将脉冲信号送到无线通信模块。

 3.1.2 无线通信模块

  无线传输模块采用TI 公司的高集成度的片上系统( System on chip,SOC) 芯片CC2530,其内部集成了1个高性能的RF 射频收发器和1 个增强型的低功耗8051 微控制器内核,它具有较远的数据传输距离和较强的抗干扰能力。8051 作为基础芯片,价格低廉,这样就大大降低了产品研发的难度和成本; 同时,可以用C51 程序代码进行软件的开发,这样也就极大地缩短了产品研发的周期。

  3.1.3 电源模块

  电源模块为可穿戴传感器提供能量。受体积限制且设备不能频繁更换电池,必须采取一系列有效措施降低能耗,以保证医疗节点具有较强的续航能力。锂电池自放电率低,放电电压平缓的特点符合系统对电源的要求,故采用可充电的锂电池对可穿戴传感器供电。但系统正常工作时,数据处理模块工作电压是3.3 V,传感器工作在5 V,电源需要经过电压转换后才能应用到系统中。在电压转换中,利用MC7805 稳定输出5 V 电压,利用AMS1117 稳定输出3.3 V 电压。如图5所示。

基于ZigBee可穿戴传感器的医疗监护系统

  图5 电源模块

  3.2 网络协调器和上位机

  网络协调器作为整个网络的协调者,向下与无线传感器通信,向上与上位机通信。负责组建网络,接收终端发送的数据,同样以CC2530 为核心设计接收端,CC2530 接收完数据后通过串口将其上传给上位机,使监护中心能够实时监测病人的生理参数,如图6 所示。

基于ZigBee可穿戴传感器的医疗监护系统

  图6 网络协调器与上位机结构图

  网络协调器与上位机采用串口方式进行通信。为使单片机与上位机通信电平保持一致,采用MAX232芯片完成单片机与上位机的双向电平转换。MAX232内部有电压倍增电路和转换电路,而且仅需+5 V 电源便可工作,使用十分方便,它与单片机连接时可以采用最简单的方式连接。

  4 系统软件设计

  整个系统的软件采用模块化的设计思路,主要由脉搏采集与处理、ZigBee 网络和串口通信三部分组成。

  4.1 脉搏采集与处理

  程序由主程序、外部中断服务程序、定时器中断服务程序和数据处理程序组成。从中断口输入的脉搏脉冲信号作为外部中断请求信号,外部中断采用下降沿触发的方式。程序采用测脉冲周期的方法进行测量,即用脉冲来控制计时信号,通过检测10 次脉冲周期求平均,再换算成1 min 脉搏的次数,从中断口每输入10 个脉冲信号刷新1 次脉搏次数。脉搏采集流程如图7 所示。

基于ZigBee可穿戴传感器的医疗监护系统

  图7 脉搏采集流程图

  4.2 ZigBee 网络

  ZigBee 网络支持3 种类型拓扑结构: 星形结构、网状结构和树形状结构,本系统使用星形网络拓扑结构实现多个无线传感器与网络协调器的通信,多个无线传感器进行组网,通过协调器来管理网络,以达到配置和控制无线传感器的目的。在星形网络中,无线传感器只与网络协调器进行点对点的通信,为实现这一功能,协调器必须先组建一个网络,这样无线传感器扫描的时候才可以找到网络,找到网络后无线传感器再进行入网请求。如果协调器响应了入网请求,则无线传感器才可以成功入网,并且发送绑定请求。若协调器发送允许绑定并被终端节点收到,则可以实现终端节点与协调器的通信了。网络协调器将有效数据通过串口上传监护中心,从而实现病人生理参数的采集和分析。无线传感器和网络协调器的工作流程分别如图8和9 所示。

基于ZigBee可穿戴传感器的医疗监护系统               基于ZigBee可穿戴传感器的医疗监护系统

  图8 无线传感器工作流程图               图9 网络协调器工作流程
 

    5 实验测试

  根据设计的基于ZigBee 技术的可穿戴传感器监护系统,本文对系统进行初步测试。随机挑选一病人对他的生理参数进行检测,为了测试数据无线传输的有效性,每隔一段时间,通过上位机读取病人的生理参数。同时,为了测试系统采集数据的准确性,将系统测量的结果与传统有线方式的测量结果进行比较。部分生理参数测量情况如表1、表2 所示。

基于ZigBee可穿戴传感器的医疗监护系统

  表1 体温测量数据

基于ZigBee可穿戴传感器的医疗监护系统

  表2 脉搏测量数据

  从表1 体温测量数据可以看出,系统能采集病人生理参数并无线传输,验证了系统无线传输功能的有效性; 同时系统测量的体温数据与体温计的结果基本上一致,说明系统对体温的测量有较高的准确性。从表2 脉搏测量数据可以看出,系统测量的数据与血压计测量的数据存在2% 左右的差距,不会影响医护人员的正确决策,符合实际要求。

  实验表明,本系统能以较高的精度采集病人生理参数并完成数据的有效传输,较好地完成了对病人的无线监护。

  6 结论

  以无线通信模块CC2530为核心,基于ZigBee可穿戴传感器的医疗监护系统,实现了病人生理参数的采集、无线传输和显示。系统采用模块化的设计思想和高集成度的CC2530 小规模通信模块,不仅体积紧凑,而且减少了芯片的使用,保证了系统的微型化。利用ZigBee 协议进行数据的无线传输,从而实现了医疗监护的无线化。系统集成了多种类型的传感器,能完成各种生理参数的测量,功能多。

  另外,系统预留了多个扩展接口,方便医疗传感器的接入,扩展性强。当然,对监护系统的测量数据进行分析和判断还是依靠医护人员的经验。这还需要依据专家知识和数据挖掘技术对实测数据进行进一步的融合,为医护人后时间。因此如何设计更加优异的制粒机自动控制系统以及更加合理、更加理想的控制算法,有待于进一步的探索与研究。

  参考文献:

  [1]王敏. 环模制粒机的主要技术参数[J]. 湖南饲料,2006( 4) : 39-41.

  [2]王斌斌. 环模制粒机自动控制系统[J]. 现代农业装备,2007, 22( 5) : 51-54.

  [3]王田苗,魏洪兴. 嵌入式系统设计与实例开发[M]. 北京: 清华大学出版社, 2002.

  [4]韩志刚. 无模型控制的应用[J]. 控制工程, 2002,9( 4) : 22-25.


关键字:医疗 引用地址:基于ZigBee可穿戴传感器的医疗监护系统设计

上一篇:血糖监测:谷歌变身Alphabet后在医疗领域的第一步棋
下一篇:光电式心率测量技术面临的五大问题

推荐阅读最新更新时间:2024-03-16 11:59

医疗器械领域公认潜力最大的市场是中国
  虽然目前世界上最大的医疗器械市场是美国、欧盟、日本,但公认潜力最大的市场是中国。在发达国家,医疗设备与器械产业和制药业的产值比为1∶1.9。而在中国,这个比率仅为1∶5。中国医疗器械市场的潜力由此可见一斑。      我国新的医疗体制改革方向已基本明确,国家将逐年加大公共卫生体系和城市社区、农村基层医疗卫生建设,可以预见,我国医疗器械市场将迎来一个快速发展的时期。"新的医改方案将着重对社区、农村医疗卫生体系进行改革,在体制、财政投入和人才培养方面都会有明确的政策,基层卫生事业改革的步子要加快。"7月3日上午,在参加全国政协常委会议关于"优先发展教育和建立基本医疗卫生制度"的专题分组讨论时,卫生部党组书记高强透露了医改方案的重点。
[医疗电子]
医疗机器人具有怎样的作用
在对新冠肺炎疫情的防控过程中,疫情医疗机器人的得到快速发展,并形成了一定规模。在国内各大医院几乎都可以看到各种不同的疫情医疗机器人在为为疫情防控解放人力与缓解压力。 在新冠肺炎疫情防控救治中,疫情医疗机器人在医院的重症监护室、感染病房、住院病区、化验科室、手术室等场景,智能配送药品、标本、器材、耗材、衣物、餐食等物品,极大提高了医务人员的工作效率。 疫区医护人员与传染源密切接触,工作压力大、心理压力大、劳动强度大,通过使用米克力美M-51 robot疫情医疗机器人代替或辅助医护人员完成部分工作,将大幅减轻医护人员压力、提高工作效率,还可以大幅降低医护人员的感染率。米克力美M-51 robot疫情医疗机器人产品4大优势
[机器人]
抢占医疗照护商机 德州仪器推出16/32位MCU
  全球高龄、少子化趋势下,医疗照护需求已陆续在先进国家萌芽,有鉴于可携式与联网医疗电子为大势所趋,将激励高整合度、节能及支持联网功能的16位、32位微控制器(MCU)方案需求上扬,半导体大厂德州仪器(TI)已积极展开布局。   德州仪器医疗与高可靠事业群总经理Karthik Vasanth认为,可携式、低功耗、高效能与低单价的医疗电子势不可当,半导体组件商将在其中扮演不可或缺要角。   德州仪器医疗与高可靠事业群总经理Karthik Vasanth表示,由于MCU为诉求可携式、联网功能的消费性医疗和个人保健领域中不可或缺的关键组件,因此,德州仪器已推出强调支持完整讯号链、低耗电量的高整合度16位MCU方案,锁定血压计、呼
[医疗电子]
8051单片机在机器人技术和医疗领域的应用
  距离8051单片机的诞生已有40多年,由于专利的到期,国内8051单片机,在价格上一般都会便宜很多。随着科学技术的发展,单片机的使用减小了电子产品的尺寸、成本和复杂性。由于其简单性和优势,越来越多地电子产品使用这些嵌入式芯片和单片机。   我们可以进行单片机编程,以根据电路操作的要求执行各种任务。因此,仅通过改变程序指令就可以在不改变项目的任何硬件电路的情况下由单个电路执行各种任务。因此,单片机在科学技术中的应用正在迅速增加。   一、单片机的应用   单片机通常用于电气和电子项目或电路。有各种类型的单片机,例如:英锐恩的8051系列8位单片机EN8F5113等。但是,由于8051单片机与其他单片机相比具有优势,因此经
[单片机]
8051单片机在机器人技术和<font color='red'>医疗</font>领域的应用
面向家庭的远程健康监护医疗系统的设计
  1 引 言   远程医疗监护是指通过通信网络将远端的生理和医学信号传送到监护中心进行分析,并给出诊断意见的一种技术手段。他是随着计算机技术、现代通信技术的发展而发展起来的。计算机技术与现代通讯的发展为远程医疗服务带来新的机遇,使得人们可通过应用计算机技术和现代通信,实现个人与医院间,医院和医院间的医学信息的远程传输和监控,远程会诊、医疗急救、远程医疗教育与交流等。其中面向家庭的远程医疗健康监护是在配备先进适宜的医疗设备的条件下,将千家万户和医疗机构联系起来,实现医疗进入家庭,在病人家中实施监护、诊断、治疗、康复和保健多位一体的一种新的远程医疗模式。远程病人监护已经越来越引起人们的极大关注。其快速发展有很强的社会现实背景:
[医疗电子]
去年最生猛的8项医疗科技,你看好哪几个?
    Medgadget是美国一家医疗科技信息网站,专注于医疗技术、产品和创新的报道已有十年。回顾过去一年的报道,Medgadget评出了2014年最令人兴奋、最具创新性、对患者最有益的新趋势和新产品。 柔性微电子     柔性微电子(Flexible Microelectronics)能够适应不规则的人体组织形状,并配合这些组织的运动,实现感知能力,将来甚至还能针对不同的生理参数做出反应。     在这方面,谷歌隐形眼镜是一个代表。谷歌去年1月宣布,正在研发一款智能隐形眼镜,可通过分析佩戴者泪液中的葡萄糖含量帮助糖尿病患者监测血糖水平,从而免去糖尿病患者取血化验的痛苦。该隐形眼镜内置上万个微型晶体管和细如发丝的天线
[医疗电子]
2016你必须知道的新兴医疗“黑科技”
    前不久,世界经济论坛在达沃斯年会上公布了2016年度十大新兴技术,这些技术无疑会在改善人们生活、推动行业变革和维护地球生态等领域产生巨大作用。     与往年相比, 今年选中的新兴技术在生物科学领域要更突出,且除了考量不同技术对人类的好处外,也更顾及其对环境的影响。 纳米传感器和纳米级物联网将对医学产生巨大影响     物联网正处在迅速发展扩张的阶段,分析师们预计直到2020年时,物联网设备总数量会达到300亿。物联网能够赋予普通事物意想不到的能力,尤其是那些由人工智能系统进行监控的设备。     比如,当你下班回家时,房门会识别确认你是主人,自动开门。又如一位心脏病患者,当他的心脏已经出现了机能衰弱的
[医疗电子]
无线充电在医疗设备上的应用
想象一下,你是一家大城市急救室的医疗技师。你在各个病房之间穿梭,使用便携式诊断设备协助医护人员做诊断。工作压力大,病人源源不断,你根本没时间去找插座,把你的设备插上去。你大概愿意把设备放到一个地方,让它自动充电,这样你就能到下一个病人和伤者那里,他们需要动作迅速和高效的医护人员。对你和病人来说幸运的是,无线充电已经是一种现成的技术。    标准   行业标准规范正在引领无线充电的发展。无线Wireless Power Consortium‘s (WPC)标准也被称为Qi(发音“奇”)。这个规范又分为系统的三个核心部分—功率发射机、功率接收机,以及两个设备之间的通信协议。这个标准的主要特性是(见下面的框图):      来源
[模拟电子]
无线充电在<font color='red'>医疗</font>设备上的应用
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved