基于A/D转换器IC层叠并联实现通道倍扩展

最新更新时间:2009-11-06来源: 微计算机信息关键字:单片机  A/D转换器  通道  扩展  层叠并联 手机看文章 扫描二维码
随时随地手机看文章

1 引 言

  A/D转换器是数据采集中常用的模/数转换器件,对于具有检测功能的智能仪表来说,设计者总希望在硬件电路板的最小面积内获得更多的检测通道。本文以MCS-51和ADC0804接口为例,在不增加A/D转换单元电路板面积的基础上通过三片ADC0804的IC(集成电路)层叠并联,使其模拟电压输入通道增加两倍,从而降低了硬件成本。

2 A/D转换器IC层叠并联的构思

    ADC0804是常用的8位COMS逐次逼近寄存器、三态锁定输出、20脚双列直插、典型转换时间为100μs的A/D转换器。A/D转换器IC层叠并联是将三片同型号、同生产厂家、同批生产、测试完好的ADC0804芯片层叠并联,每片按引脚号一一对应焊接(模拟量输入VI+引脚和/CS引脚除外。字母左边的“/”表示低电平有效,下同)。实现IC层叠并联后, 模拟量输入通道由原来的单路扩展为三路,在不增加A/D转换单元电路板面积的同时,使A/D转换通道数量增加两倍。

3 A/D转换器IC层叠并联设计实例

3.1 硬件接口电路设计

    将三片ADC0804层叠并联,按照各引脚的逻辑要求施加电平并进行A/D转换,测试后可知,0804(1)、0804(2)、0804(3)具体哪一片能向单片机输出转换后的数字量数据,关键取决于该芯片的输出允许信号(/CS)端是否有效(低电平有效)。由此可见,只要对三片ADC0804的/CS端进行分时控制,即可分别实现各自的A/D转换功能。ADC0804带有锁存器,可直接与89C51芯片进行连接。三片ADC0804层叠并联与MCS-51的接口电路图,如图1所示。

    3.2 三路模拟通道分时控制原理分析

    MCS-51与ADC0804接口进行单通道转换时的过程是:当ADC0804的片选信号/CS有效时,施加一个启动信号/WR,转换器将自动进行转换。转换结束后,数据被锁存器锁存,同时发出/INTR信号。此后,又在/CS有效时施加一个/RD信号,即可把转换的结果从锁存器中读出。

    图1中0804(1)、0804(2)、0804(3)三个芯片的引脚除每片的模拟量输入VI+和/CS引脚外,其余均按引脚号一一对应连接,具体选择哪个芯片输出允许,取决于该芯片是否能被选中(/CS是否有效)。在0804(1)被选中并完成A/D转换功能的过程中,只允许 0804(1)的/CS端为低电

 

 

平,使得0804(1)的/WR、/RD和/INTR端均能按时序控制正常工作, DB0-DB7的数字数据才有输出。此时0804(2)、0804(3)的/CS端必须为高电平,以保证这两个芯片的数据端DB0-DB7为高阻态,否则三个芯片的数据将相互扰乱。同理,当0804(2)被选中并完成A/D转换功能时,0804(2)的/CS端为低电平,此时0804(1)、0804(3)的/CS端必须为高电平,对于0804(3)亦然。
ADC0804的时钟频率约限制在100KHZ—1460KHZ。P1.1 、P1.2 、P1.3 分别作为0804(1)、0804(2)、0804(3)的片选分时控制信号;P1.0用作分时接收三个A/D芯片的中断请求输出/INTR信号。本例采用单极型连接方法,故三路模拟量输入的VI-端均接地。ADC0804电压输入与数字输出关系表,如表1所示。

3.3 软件应用设计

     设有三路模拟量输入的检测系统,每路电压分别为1.000V、2.000V、3.000V,采样后的数字量数据依次存放到60H—62H的3个内存单元中。该程序以中断方式进行数据传送,P1.1 、P1.2 、P1.3 分别对0804(1)、0804(2)、0804(3)分时选通;P1.0分时接收三个A/D芯片的中断请求输出信号。/INTR信号把转换完成的状态作为单片机的中断请求信号。A/D转换器IC层叠并联实现通道倍扩展程序流程图,如图2所示。其中,图2(a)为初始化程序流程图,图2(b)为中断服务程序流程图。

 

3.4 分时控制模/数转换输出结果分析

    ADC0804分时控制模/数转换输出结果表,如表2所示。

    程序执行后,60H单元的A/D转换结果为32H,对应的十六进制高半字节为3H,低半字节为2H,通过表1可查得分别对应的高半字节和低半字节电压为0.960+0.040=1.000V;61H单元的A/D转换结果为64H,对应的十六进制高半字节为6H,低半字节为4H,通过表1可查得分别对应的高半字节和低半字节电压为1.920+0.080=2.000V;62H单元的A/D转换结果为96H,对应的十六进制高半字节为9H,低半字节为6H,通过表1可查得分别对应的高半字节和低半字节电压为2.880+0.120=3.000V。

    结论:以上三个单元的A/D转换数字量结果均分别与相对应的模拟输入电压相吻合,此结果表明ADC0804A/D转换器IC层叠并联实现通道倍扩展的设计方案是成功的。

4  结束语

    此文相关技术已获中国国家专利,其创新点:采用A/D转换器IC层叠并联,在不增加A/D转换单元电路板面积的同时,使A/D转换通道的数量增加两倍,降低了硬件成本。

    该项技术还可进一步推广到三片以上ADC0804 A/D转换器或其它特性IC芯片的层叠并联中去。

关键字:单片机  A/D转换器  通道  扩展  层叠并联 编辑:金海 引用地址:基于A/D转换器IC层叠并联实现通道倍扩展

上一篇:TI推出业界首款具备缓冲输入的12位1GSPS ADC
下一篇:电力数据采集A/D转换器的选择方案

推荐阅读最新更新时间:2023-10-12 20:15

单片机硬件IIC和软件IIC区别
1. 硬件IIC用法比较复杂,模拟IIC的流程更清楚一些。 2. 硬件IIC速度比模拟快,并且可以用DMA 3. 模拟IIC可以在任何管脚上,而硬件只能在固定管脚上。 4. 软件i2c是程序员使用程序控制SCL,SDA线输出高低电平,模拟i2c协议的时序。一般较硬件i2c稳定,但是程序较为繁琐,但不难。 5. 硬件i2c程序员只要调用i2c的控制函数即可,不用直接的去控制SCL,SDA高低电平的输出。但是有些单片机的硬件i2c不太稳定,调试问题较多。
[单片机]
如何在Proteus中实现单片机的串口调试功能?
这个做起来就比较简单了,我编写了一个工作在9600bps的8051的串口程序,程序的功能就是将串口接收到的数据发送出来,Proteus中的连线为: 数据传输的图示为: 这样就模拟实现了单片机与串口之间的通信,可以实现两者之间的仿真设计。同样实现该通信的数据流为:
[单片机]
如何在Proteus中实现<font color='red'>单片机</font>的串口调试功能?
TMS320F240片内PWM实现D/A扩展功能
摘要:根据TMS320F240芯片的结构特点,提出一种新颖的基于TMS320F240的PWM输出,实现D/A转换扩展功能的设计方法;详细讨论该设计的理论基础和具体的软、硬件实现;分析实验结果,并给出具体的应用实例。该设计方案简单易行,性价比高,具有一定的通用性。 关键词:数字信号处理器 TMS320F240 PWM D/A转换 TMS320F240(简称F240) 作为一种高速、高集成度、低成本的微控制器,功能非常强大。美中不足的是,F240芯片本身虽然集成了众多满足数字控制系统所需的先进外围设备,包括A/D转换等功能,却唯独没有集成D/A转换功能,因此,在TMS320F240芯片的实际应用过程中,为其增加 D/A转换接口是
[应用]
基于msp430单片机的方波发生器
这个题目的要求是用msp430f149模拟一个信号发生器,信号发生器的频率在100-1000hz,通过按键可以实现每次加减100hz,另外加入串口通信,还可以通过pc机发送来的数值,将频率调整为相应的频率值。 信号的产生用到的是timerA 来产生pwm波,通过控制周期从而达到控制频率的目的。 以下是代码: #include msp430x14x.h #include Config.h #include stdlib.h #include string.h int flag=0; uchar key; unsigned int a=5; //unsigned int b=5; uchar string , j
[单片机]
51单片机BMP280气压和温度值测试程序
单片机源程序如下: #include bmp280.h unsigned short xdata dig_t1,dig_p1; //注意数据类型 signed short xdata dig_t2,dig_t3,dig_p2,dig_p3,dig_p4,dig_p5,dig_p6,dig_p7,dig_p8,dig_p9; long signed int xdata bmp280_ut,bmp280_up; long signed int xdata t_fine; void bmpreaddata()
[单片机]
甘肃提速构建“大送端”特高压通道
中国储能网讯: 甘肃电网是西北电网的中心枢纽,要实现新能源大市场、大流通、大循环,迫切需要加快特高压外送通道建设。预计到“十四五”末,甘肃跨省交换能力超5000万千瓦,年外送电量将突破千亿千瓦时。 国家能源局近日出具《关于明确将甘肃作为“外电入浙”送端省份的函》,正式明确甘肃省为“外电入浙”送端省份,甘肃河西第二条特高压直流工程落点为浙江,并同步纳入《国家“十四五”电力规划》。 甘肃,位于我国西北地区,东通陕西,西达新疆,南瞰四川、青海,北扼宁夏、内蒙古。特殊的地理位置,使得甘肃电网成为西北电网的中心枢纽,其特高压“电力高速路”塑造了甘肃新能源外送增长极,更为西北清洁能源外送提供了战略支撑。 根据《
[新能源]
基于AT89C52单片机近距离无线通信系统电路设计
  短距离无线传输具有抗干扰性能强、可靠性高、安全性好、受地理条件限制少、安装灵活等优点,在许多领域有着广泛的应用前景。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的实际需求,短距离无线通信逐渐引起广泛关注。常见的短距离无线通信有基于802.11的无线局域网WLAN、蓝牙 (blueTooth)、HomeRF及欧洲的HiperLAN(高性能无线局域网),但其硬件设计、接口方式、通信协议及软件堆栈复杂,需专门的开发系统,开发成本高、周期长,最终产品成本也高。因此这些技术在嵌入式系统中并未得到广泛应用。普通RF产品不存在这些问题,且短距离无线数据传输技术成熟,功能简单、携带方便,使其在嵌入式短程无线产品中得到了广泛应用。
[单片机]
基于AT89C52<font color='red'>单片机</font>近距离无线通信系统电路设计
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved