模拟I²C总线多主通信研究与软件设计

最新更新时间:2010-10-08来源: 单片机与嵌入式系统应用关键字:模拟I2C总线  仲裁  多主通信 手机看文章 扫描二维码
随时随地手机看文章

  I2C总线(Inter IC BUS)是Philips公司推出的双向两线串行通信标准。由于它具有接口少、通信效率高等优点,现已得到广泛的应用[1~3]。它除了可以进行简单的单主节点通信外,还可以应用在多主节点的通信系统中。在多主节点通信系统中,如果两个或者更多的主节点同时启动数据传输,总线具有冲突检测和仲裁功能,保证通信正常进行并防止数据破坏。现在许多微控制器(MCU)都具有I2C总线接口,能方便地进行I2C总线设计。对于没有I2C总线接口的MCU,可以采用两条I/O接口线进行模拟[2,3]。目前,一些介绍模拟I2C的资料主要讲的是在单主节点系统中进行的通信,这使得模拟I2C总线的应用具有一定的局限性。本文根据总线仲裁的思想,提出一种多主节点通信的思想及实现流程。

  1  I2C总线系统简介[1~3]

  I2C总线系统是由SCL(串行时钟)和SDA(串行数据)两根总线构成的。该总线有严格的时序要求,总线工作时,由串行时钟线SCL传送时钟脉冲,由串行数据线SDA传送数据。总线协议规定,各主节点进行通信时都要有起始、结束、发送数据和应答信号。这些信号都是通信过程中的基本单元。总线传送的每1帧数据均是1个字节,每当发送完1个字节后,接收节点就相应给一应答信号。协议规定,在启动总线后的第1个字节的高7位是对从节点的寻址地址,第8位为方向位(“0”表示主节点对从节点的写操作;“1”表示主节点对从节点的读操作),其余的字节为操作数据。图1列出I2C总线上几个基本信号的时序。

  图1中包括起始信号、停止信号、应答信号、非应答信号以及传输数据“0”和数据“1”的时序。起始信号就是在SCL线为高时SDA线从高变化到低;停止信号就是在SCL线为高时SDA线从低变化到高;应答信号是在SCL为高时SDA为低;非应答信号相反,是在SCL为高时SDA为高。传输数据“0”和数据“1”与发送应答位和非应答位时序图是相同的。

图1  I2C总线上基本信号的时序

  图2表示了一个完整的数据传送过程。在I2C总线发送起始信号后,发送从机的7位寻址地址和1位表示这次操作性质的读写位,在有应答信号后开始传送数据,直到发送停止信号。数据是以字节为单位的。发送节点每发送1个字节就要检测SDA线上有没有收到应答信号,有则继续发送,否则将停止发送数据。

图2  一次完整的数据传送过程

  2  I2C总线的仲裁

  在多主的通信系统中。总线上有多个节点,它们都有自己的寻址地址,可以作为从节点被别的节点访问,同时它们都可以作为主节点向其他的节点发送控制字节和传送数据。但是如果有两个或两个以上的节点都向总线上发送启动信号并开始传送数据,这样就形成了冲突。要解决这种冲突,就要进行仲裁的判决,这就是I2C总线上的仲裁。

  I2C总线上的仲裁分两部分:SCL线的同步和SDA线的仲裁。SCL同步是由于总线具有线“与”的逻辑功能,即只要有一个节点发送低电平时,总线上就表现为低电平。当所有的节点都发送高电平时,总线才能表现为高电平。正是由于线“与”逻辑功能的原理,当多个节点同时发送时钟信号时,在总线上表现的是统一的时钟信号。这就是SCL的同步原理。

  SDA线的仲裁也是建立在总线具有线“与”逻辑功能的原理上的。节点在发送1位数据后,比较总线上所呈现的数据与自己发送的是否一致。是,继续发送;否则,退出竞争。图3中给出了两个节点在总线上的仲裁过程。SDA线的仲裁可以保证I2C总线系统在多个主节点同时企图控制总线时通信正常进行并且数据不丢失。总线系统通过仲裁只允许一个主节点可以继续占据总线[1]。

  图3是以两个节点为例的仲裁过程。DATA1和DATA2分别是主节点向总线所发送的数据信号,SDA为总线上所呈现的数据信号,SCL是总线上所呈现的时钟信号。当主节点1、2同时发送起始信号时,两个主节点都发送了高电平信号。这时总线上呈现的信号为高电平,两个主节点都检测到总线上的信号与自己发送的信号相同,继续发送数据。第2个时钟周期,2个主节点都发送低电平信号,在总线上呈现的信号为低电平,仍继续发送数据。在第3个时钟周期,主节点1发送高电平信号,而主节点2发送低电平信号。根据总线的线“与”的逻辑功能,总线上的信号为低电平,这时主节点1检测到总线上的数据和自己所发送的数据不一样,就断开数据的输出级,转为从机接收状态。这样主节点2就赢得了总线,而且数据没有丢失,即总线的数据与主节点2所发送的数据一样,而主节点1在转为从节点后继续接收数据,同样也没有丢掉SDA线上的数据。因此在仲裁过程中数据没有丢失。

图3  两个主节点的仲裁过程

  3  多主通信的原理及其实现流程

  多主通信就是在总线上有多个节点。这些节点既可以作为主节点访问其他的节点,也可以作为从节点被其他节点访问。当有多个节点同时企图占用总线时,就需要总线的仲裁。对于模拟I2C总线系统,怎样实现总线的仲裁是现在研究模拟I2C总线系统的难点。文献[4]提出在系统中增加1根BUSY线,在占用总线之前先检测BUSY线,看总线是否被占用。若总线空闲,则设置BUSY线并向总线上传送数据;否则,接收数据,直到总线空闲时才占有总线。这种实现多主通信的方法有两个缺点:① 因为I2C最大的优点就是接口少、效率高,这样做不仅增加了使用资源而且减少了I2C总线的优势;② 当主节点数比较多时,等待时间比较长,效率不高。本设计根据总线的仲裁原理,提出一种基于延时比较的仲裁方法。当主节点想要占用总线时,先检测总线上是否空闲,如果总线是空闲的就发送数据。在发送数据的同时,将总线上的数据接收并与发送的数据进行比较。如果不同,说明总线上同时还存在其他节点,于是就退出;否则,一直到发送完数据。这种方法既体现了I2C总线的高效性,同时还具有良好的扩展性。

  图4  多主通信流程

  图4给出了基于延时比较的多主通信流程,其中MCU作为从节点部分的流程在图5中给出。在节点发送起始信号之前先要检测一下总线上是否为空闲状态(BUSY是否为0)。这里使用的检测方法是,持续检测一段时间看总线上的电平是否一直为高,若是说明总线上为闲状态,否则说明有其他的节点正在使用总线,要等一段时间再发送。当总线空闲时,发送起始信号,接着发送要访问的从节点的地址字节。每发送1位数据就接收比较1次,看发送和接收的是否一致,若是则继续,否则跳出到从节点的接收状态。如果没有产生冲突,MCU作为主节点继续发送数据,直到任务结束,然后发送停止信号并返回。如果数据不一样,MCU将跳转到从节点状态。由于在跳转到从节点接收状态的过程中累加器(ACC)和工作寄存器(Ri)的数据没有发生变化,所以数据没有丢失,作为从节点可以继续接收总线上的数据。这样整个通信的过程没有中断,数据也没有丢失。

  图5  从节点部分的流程

  图5给出了从节点的流程。进入从节点时,要将BUSY置为高,说明MCU现在正在工作,不能完成其他的任务。在MCU作为从节点完成接收任务后,要将BUSY置为低。MCU在接收到寻址字节后与自己的地址字节进行比较。如果是访问自己的就进入到下面的接收程序,否则跳出。在访问自己的时候,还要判断主节点是读取数据还是写数据,以便进入相应的程序。在写字节的子程序中,从节点每发送1个字节的数据后都要察看是否有应答信号(ACK),有则说明数据接收到了;否则要跳出等待,重新发送。在读字节的子程序中,每接收1个字节的数据就要发送1个应答信号(ACK),以示接收正常,否则主节点将停止继续发送。在现有的资料中,关于从节点的原理和源代码比较少,这里给出作为从节点时写字节子程序的源代码。由于篇幅有限其他的子程序没有列出。

  4  部分源代码

  本节是在MCU多主通信中的部分源代码。多主通信的实现中有几个难点和重点。一是在作为主节点时的写字节子程序,里面要包括发送的每位数据和总线的数据进行比较并做出判断。如果数据不同,要跳出并进入从节点的状态。由于子程序返回主程序时改变的只是PC的值而累加器(ACC)和工作寄存器(Ri)里面的值是不变的,因此MCU进入从机状态后继续接收总线剩下的数据,这样总线的数据并没有丢失。二是作为从节点时的写字节的子程序。由于时钟线是由主节点的MCU控制的,所以怎样根据SCL线来读取SDA线的数据是其中的一个难点。三是在具有子地址的从节点关于是写字节还是读字节时的判断。如果是写字节时主节点会给出新的起始信号,并再次发送从节点的地址数据。这时从节点需要做出判断是读取数据还是写数据,并进入相应的子程序。这里给出以上三个重点和难点的子程序的源代码,以供读者参考。这些源代码经实践证明都是正确的。

  主节点的写字节子程序:

  ;其中的NOP可根据时钟的快慢自己加减

  WRBYTE:MOV R0,#08H

  CLR BUSY;将BUSY值清零

  WLP:  RLC A;取数据位

  JC   WR1

  SJMP WR0;判断数据位

  WLP1: DJNZ R0,WLP

  NOP

  OUT1: RET

  WR1:  SETB SDA;发送1

  NOP

  SETB  SCL

  MOV  C,SDA;判断是否与发送的数据相同

  JC   GOON

  SETB  BUSY

  AJMP  OUT1

  GOON: NOP

  NOP

  NOP

  CLR SCL

  SJMP WLP1

  WR0:  CLR SDA;发送0

NOP

  SCL

  NOP

  NOP

  NOP

  NOP

  NOP

  CLR

  SCL

  SJMP  WLP1

  从节点的写字节子程序(返回为ACK):

  SWRBYTE:MOV R0,#08H

  WAGAIN: RRC A

  MOV B,#37H

  WWAIT1: JB SCL,WWAIT1;等待SCL为低

  JC WR1;判断是发送“1”还是发送“0”

  SETB SDA;发送“1”

  AJMP COM

  WR1:  CLR SDA;发送“0”

  COM:  DJNZ R0,WWAIT2;判断是否发送完毕

  WWAIT3: JNB SCL,WWAIT3;发送完毕等待应答信号

  WWAIT4: JB SCL,WWAIT4

  WWAIT5: JNB SCL,WWAIT5

  CLR ACK

  JB  SDA,ST0

  SETB ACK

  ST0:  RET;返回

  WWAIT2: JNB SCL,WWAIT2;等待SCL为高

  SJMP WAGAIN

  从节点的读字节同时判断是否有起始信号的子程序。如果有起始信号,则转为写字节子程序:

  SRDBYTE:MOV R0,#08H

  SETB 20H;设置标志位判断是读还是写

  SETB SDA;释放总线

  RWAITJ: JNB SCL,RWAITJ;等待SCL为高

  MOV C,SDA;从总线上读取数据

  RRC A;存入累计器

  DEC R0

  MOV C,ACC.7;判断是否为起始信号

  JNC RWAITJ1;为低继续读取数据

  REWAIT: JNB SCL,RWAITJ1;开始判断是否为起始信号

  JB  SDA,REWAIT

  CLR 20H;是,则清标志位并返回

  AJMP SjRDOUT

  RWAITJ1:JB SCL,RWAITJ1;等待SCL为低

  RWAITJ3:JNB SCL,RWAITJ3;等待SCL为高

  MOV C,SDA

  RRC A

  DJNZ R0,RWAITJ2

  SjRDOUT:RET

  RWAITJ2:JB SCL,RWAITJ2;等待SCL为低继续读数据

  SJMP RWAITJ3

  5  总结

  根据总线协议中的仲裁原理,提出的基于延时比较的模拟I2C多主通信的方法,不仅能够体现了I2C总线的高效性,而且还具有良好的扩展性。它使普通不具有I2C接口的MCU可以应用在多主通信的系统中,既增加了普通MCU的使用范围,又突破了模拟I2C总线的应用局限性,为I2C总线的推广起到了积极的作用。

关键字:模拟I2C总线  仲裁  多主通信 编辑:金海 引用地址:模拟I²C总线多主通信研究与软件设计

上一篇:如何正确选择射频测试电缆组件
下一篇:USB 3.0供电电路设计的关键考量

推荐阅读最新更新时间:2023-10-12 20:17

单片机模拟I2C总线控制EEPROM读写程序
之前写的EEPROM程序虽然能够软仿成功,但烧到单片机里的时候却不能用,无疑是时序的问题,今天修正了时序,总算硬仿成功了。对照上次的程序可以发现就是添加了头函数: intrins.h ,这样就可以通过 _nop_() 指令较为准确的控制时序。 上次那个问题依然没有解决:就是接收缓冲区的数据是从readbuf 开始的,以这个程序为例: readbuf 中存放0x96 readbuf 中存放0x84 readbuf 中存放0xd5 readbuf 中存放0x63 readbuf 中存放0x7c readbuf 中存放0x8c 其实我是想把收到的数据存放在readbuf ~ 中的,我也不知道为
[单片机]
OPB总线仲裁器的RTL设计与FPGA实现
  0 引言   随着 SOC 设计技术的发展,为了使IP 核集成更快速、更方便,缩短进入市场的时间, 迫切需要一种标准的互联方案。CoreCONnect 正是在这一背景下为SOC 设计的总线架构。按 照数据访问速度它可分为三层总线,分别是处理器内部总线PLB(Processor Local Bus)、片上 外围总线OPB(On-ChipPeripheral Bus)和设备控制总线DCR(Device Control RegiSTer)。 OPB 总线是为UART、GPIO 等慢数据率设备提供接口的总线。由于集成到总线中的功能模 块越来越多,对于共享总线系统,片上仲裁是使得各个模块有效运作的必要手段。目前关于 OPB 总线仲裁
[嵌入式]
I2C总线仲裁机制
在多主的通信系统中。总线上有多个节点,它们都有自己的寻址地址,可以作为从节点被别的节点访问,同时它们都可以作为主节点向其他的节点发送控制字节和传送数据。但是如果有两个或两个以上的节点都向总线上发送启动信号并开始传送数据,这样就形成了冲突。要解决这种冲突,就要进行仲裁的判决,这就是I 2C总线上的仲裁。 I2C总线上的仲裁分两部分:SCL线的同步和SDA线的仲裁。 1   SCL线的同步(时钟同步) SCL同步是由于总线具有线“与”的逻辑功能,即只要有一个节点发送低电平时,总线上就表现为低电平。当所有的节点都发送高电平时,总线才能表现为高电平。正是由于线“与”逻辑功能的原理,当多个节点同时发送时钟信号时,在总线上表现的是统
[嵌入式]
PIC18F8722模拟I2c总线读取SHT15数据程序
//模拟I2C总线与sht15传感器通信 //将测得数据通过串口输出(成功) //未加 CRC校验 #include pic18.h #define SCL RG0 //时钟总线 #define DATA RG1 //数据总线 #define SCL_DR TRISG0 //时钟方向 #define DATA_DR TRISG1 //数据方向 #define out 0 #define in 1 #define MT 0x03 //Measure Temperature #define MH 0x05 //Measure Humidi
[单片机]
PIC18F8722<font color='red'>模拟</font><font color='red'>I2c总线</font>读取SHT15数据程序
基于CAN/RS485双层网络的远程抄表系统设计
1. 引言 目前我国普遍采用户用计量仪表即水表、电表、燃气表、热表(四表)安装在用户室内, 抄表人员走家串户,手工抄表采集数据,然后结算的计量收费方式。为了有效解决入户抄表收费存在的诸多弊端, 我国从90年代初开始研制全电子式电能表,并且取得了一定的成果。目前已研制出多种远程抄表系统,常用的有用基于电力线载波的抄表系统,基于RS-485总线的抄表系统等。 基于电力线载波的抄表系统,减少了系统由于布线带来的成本,但是由于信号和强电在同一根线上传输,传输过程中不可避免地存在强电场的干扰,信号的可靠性受到影响,而且随着传输距离的增大,信号的衰减较快,影响了抄表数据的可靠性;基于RS-485的抄表系统是较为理想的一种远
[工业控制]
51单片机模拟I2C总线的C语言实现
电路原理图     EEPROM为ATMEL公司的AT24C01A。单片机为ATMEL公司的AT89C51。   软件说明   C语言为Franklin C V3.2。将源程序另存为testi2c.c,用命令 C51testi2c.c L51TESTI2C.OBJ OHS51TESTI2C 编译,连接,得到TESTI2C.HEX文件,即可由编程器读入并进行写片,实验。 3.源程序 #include reg51.h #include intrins.h #define uchar unsign
[单片机]
51单片机<font color='red'>模拟</font><font color='red'>I2C总线</font>的C语言实现
CAN总线仲裁机制
       最近在学习CAN总线,原先一直不太明白,若有A,B   2个节点同一时刻一起向总线上发送数据,CAN总线是怎么仲裁的,来让A,B其中一个节点退出,保证高优先级的节点优先传输,今天又在网上查了一些资料,总算搞明白了一些。         在CAN总线上,若同一个时刻,既有节点向总线上发送隐形电平(1),也有节点发送显性电平(0),那么此时总线上表现出来的为显性(0)。         当总线空闲时,有多个节点同时需要发送报文,那么每个节点的发送器将会对发送位的电平和被监控的总线电平做比较,如果电平相同,那么该节点可以继续发送,如果发送的为一“隐性”电平(1),但是监控到一“显性”电平(0),那么该节点失去仲裁,必
[嵌入式]
模拟I2C总线通信研究与软件设计
摘要 介绍模拟I2C总线的多主节点通信原理,并提出一种新的实现方法。这种采用延时接收比较来实现仲裁的方法,可使不具有I2C接口的普通微控制器(MCU)能够实现模拟I2C总线的多主通信,同时对I2C总线的推广起到了积极作用。 关键词 模拟I2C总线 仲裁 多主通信 I2C总线(Inter IC BUS)是Philips公司推出的双向两线串行通信标准。由于它具有接口少、通信效率高等优点,现已得到广泛的应用 。它除了可以进行简单的单主节点通信外,还可以应用在多主节点的通信系统中。在多主节点通信系统中,如果两个或者更多的主节点同时启动数据传输,总线具有冲突检测和仲裁功能,保证通信正常进行并防止数据破坏。现在许多微控制器(MCU)都
[应用]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved