二阶有源低通滤波电路的设计与分析

最新更新时间:2010-12-22来源: 互联网关键字:二阶有源低通滤波器  电路设计自动化  仿真分析  Multisim10 手机看文章 扫描二维码
随时随地手机看文章

    滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。从滤波器阶数可分为一阶和高阶,阶数越高,幅频特性越陡峭。高阶滤波器通常可由一阶和二阶滤波器级联而成。采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。

1 设计分析

1.1 二阶有源滤波器的典型结构

    二阶有源滤波器的典型结构如图1所示。其中,Y1~Y5为导纳,考虑到UP=UN,根据KCL可求得

a.JPG

b.JPG
  
    式(1)是二阶压控电压源滤波器传递函数的一般表达式,式中,Auf=1+Rf/R6。只要适当选择Yi,1≤i≤5,就可以构成低通、高通、带通等有源滤波器。

1.2 二阶有源低通滤波器特性分析

    设Y1=1/R1,Y2=sC1,Y3=O,Y4=1/R2,Y5=sC2,将其代入式(1)中,得到压控电压源型二阶有源低通滤波器的传递函数为
   c.JPG
   d.JPG

    式(2)为二阶低通滤波器传递函数的典型表达式。其中,ωn为特征角频率,Q称为等效品质因数。

2 二阶有源低通滤波器的设计

2.1 设计要求
    设计一个压控电压源型二阶有源低通滤波电路,要求通带截止频率e1.JPGfo=100 kHz,等效品质因数Q=1,试确定电路中有关元件的参数值。

2.2 选择运放

    设计要求的截止频率较高,因此要求运放的频带较宽,选用通频带较宽的运放,本例选用运放3554AM,带宽为19 MHz,适合用于波形发生电路、脉冲放大电路等。输出电流,达到100 mA,精度高,满足设计要求。

2.3 电路设计

    为设计方便选取R1=R2=R,C1=C2=C,则通带截止频率为可首先选定电容C=1 000 pF,计算得R≈1.59 kΩ,选R=1.6 kΩ。

    等效品质因数,则RF=R6。为使集成运放两个输入端对地的电阻平衡,应使R6//RF=2R=3.2kΩ,则R6=RF=6.4 kΩ,选R6=RF=6.2 kΩ。

2.4 理论计算

    根据实际选择的元件参数重新计算滤波电路的特征参量。

    式(2)中,令s=jω,得到二阶低通滤波电路的频率特性为
   e.JPG

    通带截止频率fo与3 dB截止频率fc计算如下
   f.JPG

    实际设计的二阶有源低通滤波电路,如图2所示。

g.JPG

3 Multisim分析

3.1 用虚拟示波器观察输入输出波形

    Multisim环境下,创建如图3所示的二阶有源低通滤波器的仿真电路,启动仿真按钮,用虚拟示波器测得的输入输出波形,如图4所示。可以看出,输出信号的频率与输入信号一致,输出信号与输入信号同频不同相,说明二阶低通滤波电路不会改变信号的频率。从图4中可以看出,当输入信号的频率较大(例如200 kHz)时,输出信号的幅值明显小于输入信号的幅值,而低频情况下的电压放大倍数Auf=2。显然,当输入信号的频率较大时,电路的放大作用已不理想。

h.JPG
            
i.JPG

    调节输入信号V3的频率,使之分别为126 kHz,100 kHz,2 kHz。由虚拟示波器得到,当输入信号的频率为2 kHz时,输入输出信号同频同相,且输入信号的幅值约为1 V,输出信号的幅值约为2 V,即Auf=2,与理论计算相吻合。而输入信号的频率为100 kHz时,Auf≈2。当输入信号的频率为126 kHz时,输入信号的幅值约为998 mV,输出信号的幅值约为1.369 V,此时,说明3 dB截止频率fc接近126 kHz。也可以用瞬态分析法观察输入输出波形。

3.2 测试幅/相特性等特征参量

3.2.1 用波特图示仪测试频率特性

    在图3所示的电路中,可以用波特图示仪观察电路的幅/相特性。从仿真得到的幅频特性曲线中可以看到,通带的对数坐标为6.02 dB,对应的电压放大倍数Auf=2,且输入输出同频同相。对数坐标减去3 dB即是对应的3 dB止频率,移动读数指针可看出3 dB截止频率约在126 kHz附近,与理论计算很接近。

3.2.2 用交流分析法测试频率特性

    另外,还可启用交流分析法测试电路的幅/相特性。选择Simulate/Analyses/AC Analysis命令。在出现的对话框中进行如下设置:起始频率1Hz,终止频率100MHz,扫描类型选择十进制,纵坐标选dB为刻度,在“Output”选项卡中输出节点选V(6),单击“Simulation”,仿真结果如图5所示。测得的通带电压放大倍数、3 dB截止频率也与理论分析相一致。

i.JPG

3.2.3 用参数扫描分析法测试斯率特性
    在图3所示电路中,改变电阻R6,RF的值,从而改变Q值,观察频率特性变化。由理论分析结果可知,改变放大倍数,即可改变Q值。利用Multisim的参数扫描分析功能,即可得到不同条件下的频率特性。
    在主菜单栏中,选择Simulate/Analyses/ParameterSweep——命令,在出现的对话框中进行如下设置:器件类型选择电阻,器件名称选择电阻RF,分别取RF=0 Ω,6 200 Ω,ll 780 Ω“More Options”选项中,扫描类型选AC Analysis,再选择节点V(6)为输出节点,点击Simulate进行仿真,得到RF取3个不同阻值时电路的幅/相特性曲线,如图6所示。
j.JPG

    从图6中可以看出,3条曲线从下至上对应的电阻RF分别为0 Ω,6200 Ω,11780 Ω幅频特性纵坐标对应的对数坐标分别-8.4 dB,2.88 dB,12.89 dB对应的3 dB截止频率约为127 kHz。可见,RF越大,Auf越大,Q越大,幅频特性曲线越尖锐。在同样的设计截止频率下,Q值的不同对实际截止频率有较大的影响。同理可以分析电阻R6对幅频特性的影响。
    采用类似的方法,还可以分析电容C1,C2,电阻R1,R2对通频带的影响。分析结果如下:C1,C2,R1,R2的变小均会引起电路截止频率的增大和通频带的变宽,而C1,C2,R1,R2的变化对电压增益的影响不大。R6与输出电压幅度成反比,RF与输出电压幅度成正比,但R6,RF的变化不影响电路的频率特性。

4 结束语
    分析结果表明,Multisim中的仿真分析结果与理论计算十分接近。Multisim既是一个非常优秀的电子技术教学工具,又是一个专门用于电子电路设计与仿真的软件。将Multisim应用于电路设计不仅可以简化设计过程、提高设计效率,而且可以优化设计方案、节约设计成本,是现代化设计的趋势。

关键字:二阶有源低通滤波器  电路设计自动化  仿真分析  Multisim10 编辑:冀凯 引用地址:二阶有源低通滤波电路的设计与分析

上一篇:基于傅里叶变换的MEMS地震检波器设计
下一篇:基于CPLD的多路信号采集器的硬件电路设计

推荐阅读最新更新时间:2023-10-12 20:18

航天器大功率DC-DC变换器热仿真分析
   引言   随着电子技术的迅猛发展,电子设备的功率密度不断提高。高功率密度带来的高温对大多数电子元器件将产生严重的影响,它会导致电子元器件的失效,进而引起整个设备的失效。        因此电子设备的热设计在整个产品的设计中占有越来越重要的地位,传统的热设计方法已经很难适应发展的需要。为了减少设计成本、提高产品的一次成功率,改善电子产品的性能,热仿真技术越来越普遍的应用于电子设备的热分析过程。设计人员借助热仿真可以减少设计、生产、再设计和再生产的费用,模拟特殊工作环境中的边界条件,缩短高性能、高可靠度电子设备的研制周期。   1 航天器大功率DC-DC变换器热设计要求   DC-DC变换器是航天器在地面测试和在
[嵌入式]
高速PCB设计中的时序分析仿真策略
摘要:详细讨论了在高速PCB设计中最常见的公共时钟同步(COMMON CLOCK)和源同步(SOURCE SYNCHRONOUS)电路的时序分析方法,并结合宽带网交换机设计实例在CADENCE仿真软件平台上进行了信号完整性仿真及时序仿真,得出用于指导PCB布局、布线约束规则的过程及思路。实践证实在高速设计中进行正确的时序分析及仿真对保证高速PCB设计的质量和速度十分必要。 关键词:公共时钟同步 源同步 信号完整性 时序 仿真 在网络通讯领域,ATM交换机、核心路由器、千兆以太网以及各种网关设备中,系统数据速率、时钟速率不断提高,相应处理器的工作频率也越来越高;数据、语音、图像的传输速度已经远远高于500Mbps,数百兆乃至数
[半导体设计/制造]
PCI总线互连之时序分析仿真验证
随着通信、计算机等电子技术的快速发展,对高速PCB设计分析带来了越来越高的要求,包括信号完整性(SI)分析(如延迟、反射、串扰、时序等)、EMC/EMI分析(如传导(CE)与辐射(RE)骚扰分析、抗扰分析、散热分析等)、电源完整性(PI)分析与仿真等。分析域也从单纯的时域走向了时域与频域的结合。单板的PCB设计密度迅速加大,所涉及的学科也从以往的单纯性学科演变为包括通信、计算机、机械、电工、热学和材料等的综合性学科。   PCB仿真与验证技术及工具,由最初的高速设计向高频设计方向快速发展,其建摸模型已经由百兆赫兹速率的SPICE/IBIS向千兆赫兹速率的S参数(网络化离散参数模型)过渡,形成了综合性的建摸技术。设计工程师对工
[嵌入式]
CAN现场总线通信控制协议的仿真及性能分析
  控制器局域网(CAN)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。它是由德国博世公司在20世纪80年代专门为汽车行业开发的一种串行通信总线。由于其通信速率高、工作可靠、调试方便、使用灵活和性价比高等优点,己经在汽车业、航空业、工业控制、安全防护等领域中得到了广泛应用,被公认为几种最有前途的总线之一,其协议也发展为重要的国际标准。   随着CAN总线在各个行业和领域的广泛应用,其通信性能也越来越受到人们的关注。目前,已有很多学者对CAN总线通信性能进行分析研究。文中在分析CAN总线通信控制协议的基础上,在MATLAB/Sinulink软件Stateflow仿真环境下,利用有限状态机理论对CAN总线通信
[嵌入式]
基于R&S的矢量源和信号分析仪构建无线系统仿真平台的方案
在民用和军用领域,随着无线通信系统的发展,新器件、新工艺、新产品层出不穷,也使得新的通信系统越来越复杂。为了保证设计的准确性,同时缩短相应的设计周期,需要在设计初期就开始对系统进行相应的仿真和验证,同时对于各个阶段完成的不同模块也要进行分别的仿真和测试。虽然各类大型的EDA软件相继成熟,针对不同的领域都有不同的专业软件,为完成设计提供了强大的支持。但是,由于缺少实际的被测系统,在系统仿真和模块仿真阶段如何进行相应的验证一直是困扰设计人员的主要问题。因此从设计初期开始就有必要引入相应的测试功能,这也是整个无线系统设计的重点和难点。 基于罗德与施瓦茨(R&S)公司的矢量源和信号分析仪可以充分利用仿真设计软件的优势,构建无线系统的通
[测试测量]
基于R&S的矢量源和信号<font color='red'>分析</font>仪构建无线系统<font color='red'>仿真</font>平台的方案
STM32--MDK仿真调试:逻辑分析仪的使用
在调试Debug环境下: 1.view--Analysis Windows--Logic Analyzer //调用逻辑分析仪 2.单击逻辑分析仪窗口右上角的“Setup…(setup logic analyzer)”进行设置:设置监视分析的引脚。 例:我想看看PORTB.5引脚的仿真情况: 在“current logic analyzer signals”--插入“PORTB.5”,然后它会自动转换成(PORTB &0x00000020) 5形式,即:只保留第5引脚的值,其他引脚清零; 在signal Display--Display Type:设置为bit/color:设置显示的颜色。 3.run运行一
[单片机]
单向开关前置的单相PFC电路仿真研究与分析
使用高频 开关 电路作为功率变换单元的电力电子设备功率因数低的根源是整流电路后增加的滤波电容,该电容能使输出电压平滑但却使输入电流变为尖脉冲,从而严重影响电路的功率因数。功率因数校正的基本思想是将整流器和滤波电容分开,使整流电路的容性负载变为阻性负载,从而达到功率因数校正的目的。本文引入了单向开关前置的单相 PFC 电路较好地解决了单相不控整流电路功率因数低下的问题。 1 单相不控整流电路的结构及仿真分析 对于在单相不控整流电路中,如果负载等效为一个纯电阻,则输入功率因数为1。但通常情况下负载几乎不可能为纯电阻,这时电路的输入电流波形就会发生畸变。下面结合图1所示的大电容滤波的单相不控整流电路的结构,对该电路进行仿真分析。 仿
[电源管理]
单向开关前置的单相PFC电路<font color='red'>仿真</font>研究与<font color='red'>分析</font>
永磁同步电机FOC控制的基本原理及Matlab/Simulink仿真分析
前言 做永磁同步电机控制绕不开FOC,本章节主要介绍FOC控制的基本原理、坐标变换以及永磁同步电机在同步旋转坐标系下的数学模型,并通过Matlab/Simulink进行永磁同步电机FOC控制算法的仿真分析。 一、FOC的基本原理 磁场定向控制(Field-Oriented Control,FOC)系统的基本思想是:通过坐标变换,在按转子磁场定向同步旋转坐标系中,得到等效的直流电动机模型,仿照直流电动机的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制,具体流程如下图所示: FOC最重要的原则是:按转子磁场定向,即保持转子磁链旋转矢量始终与dq坐标系下的d轴重合,q轴正交
[嵌入式]
永磁同步电机FOC控制的基本原理及Matlab/Simulink<font color='red'>仿真</font><font color='red'>分析</font>
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved