Many laser diodes include a photodiode that generates a current proportional to the intensity (optical power) of the laser beam. Most of these photodiodes, however, have relatively slow response times and cannot track the peak optical power of a typical modulated laser diode. Instead, the driver circuits for these devices control the laser by monitoring a relative average optical power.
The circuit in the figure below includes a 10-bit digital-to-analog converter (DAC) with 3-wire serial input that operates and maintains a visible-light laser diode at constant average optical output power. A separate digital input line (MOD) enables a comparator with open-drain output (IC4) to implement digital communications by pulsing the laser-diode through Q1. Circuit components were chosen to minimize the layout are and cost.
For Larger Image
This circuit provides digital control of the modulation and power output of a visible-light laser diode.
Resistor R6 converts the photodiode current to a usable voltage, which is applied to the inverting input of a "leaky" integrator based on the high-speed op amp IC3. The integrator smoothes out variations in the modulation and prevents the feedback loop from trying to regulate the laser pulses. The integrator is made leaky (by R10) to ensure compensation of downward as well as upward variations in the average power.
Thus, the integrator creates an error signal and base drive for Q1 by monitoring the voltage across R6 and comparing it to the DAC's preset voltage. The DAC's reference voltage (from IC1) is 2.5V, but its output-voltage buffer has a gain of 2V/V, giving the DAC output an adjustment range of 0 to 5V. With its nominal base voltage set by the DAC output, Q1 controls the optical power by regulating current through the laser diode.
R9 provides isolation and helps to stabilize IC3 when the base of Q1 is being shorted and released by a signal from the MOD input. By maintaining a small laser-diode current during the "off" periods of digital modulation, R1 preempts another problem: Startup time for a laser diode increases tremendously if the forward current goes to zero. R1 ensures that the laser current is below the threshold for lasing, but high enough to allow an acceptable turn-on time for communication and modulation.
A similar version of this article appeared in the March 23, 1998 issue of Electronic Design magazine.
编辑:神话 引用地址:可视激光驱动器有数字控制功率调制-Visible-Laser
The circuit in the figure below includes a 10-bit digital-to-analog converter (DAC) with 3-wire serial input that operates and maintains a visible-light laser diode at constant average optical output power. A separate digital input line (MOD) enables a comparator with open-drain output (IC4) to implement digital communications by pulsing the laser-diode through Q1. Circuit components were chosen to minimize the layout are and cost.
For Larger Image
This circuit provides digital control of the modulation and power output of a visible-light laser diode.
Resistor R6 converts the photodiode current to a usable voltage, which is applied to the inverting input of a "leaky" integrator based on the high-speed op amp IC3. The integrator smoothes out variations in the modulation and prevents the feedback loop from trying to regulate the laser pulses. The integrator is made leaky (by R10) to ensure compensation of downward as well as upward variations in the average power.
Thus, the integrator creates an error signal and base drive for Q1 by monitoring the voltage across R6 and comparing it to the DAC's preset voltage. The DAC's reference voltage (from IC1) is 2.5V, but its output-voltage buffer has a gain of 2V/V, giving the DAC output an adjustment range of 0 to 5V. With its nominal base voltage set by the DAC output, Q1 controls the optical power by regulating current through the laser diode.
R9 provides isolation and helps to stabilize IC3 when the base of Q1 is being shorted and released by a signal from the MOD input. By maintaining a small laser-diode current during the "off" periods of digital modulation, R1 preempts another problem: Startup time for a laser diode increases tremendously if the forward current goes to zero. R1 ensures that the laser current is below the threshold for lasing, but high enough to allow an acceptable turn-on time for communication and modulation.
A similar version of this article appeared in the March 23, 1998 issue of Electronic Design magazine.
上一篇:新型高度集成化的视频字符叠加系统的研究
下一篇:下一代视频滤波放大器,延长了手持式视频系统
- 热门资源推荐
- 热门放大器推荐
小广播
热门活动
换一批
更多
最新模拟电子文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
11月16日历史上的今天
厂商技术中心